

Lhogho: The Real Logo Compiler

User Documentation

Author: Pavel Boytchev

Contributing authors: Peter Armyanov, Michael Downes

July 2013

Lhogho: The Real Logo Compiler User Documentation

 2

Table of Contents

Chapter I. Introduction ... 6

1. General information .. 6

(a) About Lhogho .. 6

(b) License .. 6

2. Quick start ... 7

(a) Getting Lhogho .. 7

(b) Using Lhogho .. 7

(c) Non-English Lhogho ... 8

3. Scripting .. 9

(a) Windows console ... 9

(b) Linux terminal ... 9

4. Compiling the compiler .. 10

5. Additional information ... 10

Chapter II. Syntax and Tokenization .. 11

1. Logo syntax ... 11

(a) Overview ... 11

(b) Data types .. 11

(c) Parentheses .. 12

(d) Programming entities .. 13

(e) User commands and operations ... 13

(f) Variable number of inputs .. 14

(g) Prefix, infix and postfix notations ... 15

2. Tokenization of data ... 15

(a) Comments .. 16

(b) Line continuation ... 17

(c) Backslashes .. 17

(d) Bars ... 18

3. Tokenization of commands ... 19

(a) Special characters .. 19

(b) Parentheses .. 19

(c) Infix operators.. 20

(d) Templates .. 20

Chapter III. Primitives .. 21

1. Numerical operations .. 21

(a) Arithmetics .. 21

(b) Rounding ... 23

(c) Exponential and logarithmic functions .. 23

Lhogho: The Real Logo Compiler User Documentation

 -3-

(d) Trigonometric functions .. 25

(e) Random numbers ... 26

(f) Sequences ... 27

(g) Operations with bits ... 27

2. Predicates and Boolean operations ... 28

(a) Compare predicates ... 28

(b) Type predicates.. 31

(c) Inclusion predicates ... 32

(d) Logical functions ... 32

3. Word and list operations ... 33

(a) Selectors .. 33

(b) Constructors .. 36

(c) Transformers .. 38

(d) Formatting ... 39

4. Control structures .. 40

(a) Conditional execution .. 40

(b) Loops ... 42

(c) Execution ... 44

(d) Exits and tags .. 46

(e) Miscallaneous .. 48

5. Files and folders .. 48

(a) Folders ... 49

(b) Files ... 50

(c) Opening and closing files .. 51

(d) Accessing file contents .. 53

(e) Text input/output ... 55

(f) Binary input/output .. 58

6. Variables ... 59

7. Advanced primitives ... 63

(a) Lhogho System variables ... 63

(b) Run-time functions and commands ... 65

(c) Parsers.. 67

(d) Error handling.. 67

(e) OS-related functions .. 70

8. Low-level access ... 71

(a) Native data types ... 71

(b) Blocks .. 73

(c) Shared libraries .. 75

(d) System stack .. 78

Chapter IV. Libraries .. 81

1. TGA .. 81

2. GL ... 82

Lhogho: The Real Logo Compiler User Documentation

 4

(a) Matrix transformations .. 82

(b) Display lists ... 83

(c) Graphical primitives .. 83

(d) Properties of graphical primitives .. 84

(e) Buffers ... 84

(f) Miscellaneous... 84

3. GLU .. 85

4. GLUT .. 85

(a) Window initialization .. 86

(b) Main loop .. 87

(c) Events .. 87

5. GLFW ... 89

(a) Initialization ... 89

(b) Window handling .. 91

(c) Video Modes ... 94

(d) Timing ... 95

(e) Input handling .. 95

(f) Callback functions .. 98

6. Euler .. 100

Chapter V. Applications .. 112

1. Hello World .. 112

2. Simple CLI .. 112

3. Prime Numbers ... 113

4. Calculator .. 113

5. Square Root ... 114

6. Cube3D ... 115

7. Mandelbrot .. 115

Chapter VI. Appendices .. 119

1. Format strings ... 119

(a) Format strings for numbers .. 119

(b) Format strings for date .. 120

(c) Format strings for time .. 120

2. Index of primitives .. 121

Lhogho: The Real Logo Compiler User Documentation

 -5-

Lhogho: The Real Logo Compiler User Documentation

 6

Chapter I. Introduction

1. General information

(a) About Lhogho

Lhogho is a compiler for the Logo language. It supports Logo programs with

traditional number/word/list processing, turtle graphics, 3D graphics, OOP, par-

allel processes, etc. Well, it will support all this things when we finish it. Hope-

fully!

Why is it called Lhogho? One of the main goals was to find a name which

sounded like Logo, but to be written in a way which no one else has seen before.

We did test Lhogho with the major search machines (back in 2005) and we got 0

hits. Today (2013) we get 67000 hits. Unfortunately we do not know how to

pronounce the name. Honestly. We asked several native English speakers, but

they ricocheted back to us the same question. So far we pronounce it the same

way as Logo, but with a slight double-wink. If you have any suggestions about

pronunciation let us know.

Lhogho is developed by a team at Department of Mathematics and Informatics

at Sofia Universit, led by Pavel Boytchev, Assoc. Prof., PhD.

(b) License

Lhogho is free software; you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Founda-

tion; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See

the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with

this program - see file LICENSE.TXT; if not, write to:

Free Software Foundation, Inc.,

51 Franklin Street, Fifth Floor,

Boston, MA 02110-1301,

USA

Lhogho: The Real Logo Compiler User Documentation

 -7-

2. Quick start

(a) Getting Lhogho

Lhogho web site provides links to prebuilt Lhogho distributions, ready to start

without compilation.

The distribution file for Windows is a zip file called lhogho.zip (the German

version is lhogho-de.zip). To unzip the file use either Windows Explorer’s

unzipper or any 3
rd

 party unzipper.

The distribution file for Linux is discontinued, as it appears that each Linux dis-

tro would need a different binary file. The option for Linux users is to download

the developer’s package (i.e. the Lhogho sources, lhogho.src.zip) and to

compile Lhogho on their machines.

(b) Using Lhogho

The examples in this section are for Windows console window. For Linux con-

sole windows you may need to append ./ before the names of the executable

programs.

If you run Lhogho without providing any inputs, it will shows its version, plat-

form, language and production date:

D:\lhogho\>lhogho

LHOGHO - The LOGO Compiler [0.0.028, windows-i386(en), Jul

4 2013]

Lhogho comes with several sample source programs – *.lgo files. These are

plain text files. Let us run hello.lgo:

D:\lhogho>lhogho hello.lgo

Hello world

Now let us use primes.lgo to print all prime numbers up to 60:

D:\lhogho>lhogho primes.lgo 60

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61

And now up to 1000:

D:\lhogho>lhogho primes.lgo 1000

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67

71 73 79 83 89 97 101 103 107 109 113 127 131 137 139

149 151 157 163 167 173 179 181 191 193 197 199 211

223 227 229 233 239 241 251 257 263 269 271 277 281

Lhogho: The Real Logo Compiler User Documentation

 8

283 293 307 311 313 317 331 337 347 349 353 359 367

373 379 383 389 397 401 409 419 421 431 433 439 443

449 457 461 463 467 479 487 491 499 503 509 521 523

541 547 557 563 569 571 577 587 593 599 601 607 613

617 619 631 641 643 647 653 659 661 673 677 683 691

701 709 719 727 733 739 743 751 757 761 769 773 787

797 809 811 821 823 827 829 839 853 857 859 863 877

881 883 887 907 911 919 929 937 941 947 953 967 971

977 983 991 997

Because Lhogho is a compiler, it can build standalone executable files, which

can be run without Lhogho. Here is how to compile primes.lgo into

primes.exe:

D:\lhogho>lhogho -x primes.lgo

D:\lhogho>primes 60

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59

In Windows the name of the executable file is primes.exe, while in Linux it is

primes. Lhogho will remove the file name extension of the source file if it is

one of these: .lgo, .log, .lg, .logo, .lho or .lhogho. If the extension is

another one, then Lhogho will append .exe (for Windows) or .run (for Linux)

to the name of the compiled program.

Executable files produced by the Lhogho could be fully-functional Lhogho

compilers. Let us compile hello.lgo into a hello.exe and then use it to

recompile primes.lgo:

D:\lhogho>lhogho -xc hello.lgo

D:\lhogho>hello -x primes.lgo

D:\lhogho>primes 60

Hello world

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59

Note that hello.exe is already an executable file that contains a Lhogho com-

piler. It makes all compiled program to print “Hello World” at the beginning.

This is like a custom-made Lhogho compiler.

(c) Non-English Lhogho

Lhogho is distributed in two versions – an English Lhogho and a German

Lhogho. The German version has everything translated into German (i.e. primi-

Lhogho: The Real Logo Compiler User Documentation

 -9-

tives, error messages, compiler options, source examples and libraries) except

for the user Documentation.

Lhogho outputs text as UTF-8. This is encoding which allows support for char-

acters outside the range of the traditional Latin alphabet. When a non-English

version of Lhogho is used in a console window, the text output may not look

correct if the console does not support UTF-8.

A Windows XP/7 console can be switched in UTF-8 mode by chcp.com

(Change codepage) command:

D:\lhogho>chcp.com 65001

Active code page: 65001

Also, in Windows XP/7 the console window should use a TrueType font. The

default raster font can render only the basic Latin characters.

3. Scripting

Lhogho can be used as a scripting engine. The following sections describe vari-

ous scenarios. Scripting for Windows and Linux is done in two conceptually dif-

ferent, but compatible ways. Thus, it is possible to make a source file executable

directly from the command prompts of both Windows and Linux.

(a) Windows console

Lhogho can be defined as a default application for running .lgo files. The fol-

lowing two commands executed from the Windows command prompt associ-

ates .lgo files with lhogho.exe:

D:\lhogho>assoc .lgo=LhoghoScript

.lgo=LhoghoScript

D:\lhogho>ftype LhoghoScript=D:\lhogho\lhogho.exe

"%1" %*

LhoghoScript=D:\lhogho\lhogho.exe "%1" %*

Once the association is done, Lhogho sources can be executed “immediately”:

D:\lhogho>hello.lgo

Hello world

(b) Linux terminal

If the first line of source code is a shell comment pointing to the compiler, then

the source file can be executed “immediately”. Consider a source file hel-

lo.lgo with the following contents:

Lhogho: The Real Logo Compiler User Documentation

 10

#! ~/lhogho/lhogho

print [Hello world]

In Linux it can be executed in this way:

~/lhogho$ hello.lgo

Hello world

4. Compiling the compiler

If none of the prebuilt binaries work on your system try to recompile Lhogho

and generate binaries. To do this first download the latest source package – it is

platform independent and is called lhogho.src.zip.

Unpack the distributable and consult the INSTALL.TXT file which contains in-

formation how to recompile Lhogho, its documentation and how to create new

distributable.

5. Additional information

Information about Lhogho as well as various resources can be accessed from its

home page at http://pavel.it.fmi.uni-sofia.bg/projects/lhogho.

To contact the authors, ask questions or share opinions visit the Lhogho Forum

at http://sourceforge.net/apps/phpbb/lhogho, and the SourceForge

portal is at http://sourceforge.net/projects/lhogho.

You are encouraged to report bugs in Lhogho, its libraries or documentation at

http://sourceforge.net/p/lhogho/bugs and to request new features at

http://sourceforge.net/p/lhogho/feature-request.

Lhogho: The Real Logo Compiler User Documentation

 -11-

Chapter II. Syntax and Tokenization

1. Logo syntax

The source programs that Lhogho understands are ASCII or UNICODE text

files that contain Logo instructions. The source text consists of tokens, which are

specialized units of texts, like words and punctuation marks in sentences.

(a) Overview

The syntax of Logo programs is fairly simple. Usually tokens, that describe in-

structions, are separated by spaces, but some special punctuation tokens can be

written next to each other. A typical syntax of a Logo instruction is:

command param1 param2 param3 …

where command is a token, and parami are expressions made of tokens. Expres-

sions have the same structure as instructions:

operation param1 param2 param3 …

(b) Data types

Lhogho supports two Logo data types: words and lists.

Words are used to represent texts. For a token to be evaluated as a word, it must

be preceded by double quotes:

"word

If a word is in a list of data, the double quotes are not necessary.

Numbers are special kind of words which are self-evaluable, i.e. it is not neces-

sary to use double quotes:

3.14

"3.14

Finally, words are used to denote Boolean values, which are results of predicate

functions (like equal?), or are used in conditional statements (like if). The

words representing Boolean values are:

"true

"false

In the German Lhogho the Boolean values are "wahr and "falsch.

Lhogho: The Real Logo Compiler User Documentation

 12

Lists are finite sequences of words and other lists. A sequence of tokens is eval-

uated as a list if it is enclosed in square brackets […]. The square brackets are

not elements of lists.

[a list of items]

[a list [of sublists]]

[]

(c) Parentheses

Logo is descendent of the programming language LISP and thus the parentheses

play significant role in Logo programs. When parentheses are used, the opening

parenthesis is placed before the first token of an instruction or an expression,

and the closing parentheses – after the last token.

(command param1 param2 param3 …)

This rule also applies to infix operations (i.e. operation with an input before the

name of the operation):

(param1 operation param2)

Parentheses can be used for several reasons. One of them is to make source code

clearer by visually grouping tokens that form a parameter. Except for beautifica-

tion, this use of parentheses provides hints for the scope of each expression. The

parentheses in the next example are not necessary:

print item (count :n) (word "abc :n)

Another purpose of parentheses is to change the order of calculations. If they are

not used, an expression may still be syntactically valid, but will produce another

result. The next expressions will produce the values (a+5)(b-10) and sin(30)+10.

Without parentheses, the values will be a+5b-10 and sin(30+10).

(:a+5)*(:b-10)

(sin 30)+10

Finally, parentheses are used to force execution of instructions and calculation

of expressions that have number of inputs different from the default one. The

next example shows the function word which is forced to process four inputs.

Without parentheses, word will process only two inputs.

 (word "a "b "c :n)

Lhogho: The Real Logo Compiler User Documentation

 -13-

(d) Programming entities

A typical feature of Logo is that data and program are expressed in the same

way – by sequences of tokens. Depending on the context, Lhogho decides how

to process any particular token or a group of tokens.

Text literals are tokens which first character is double quotes ". Such tokens are

considered by Lhogho as text literals (the double quotes are excluded from the

literal).

"sample

To define a token with special characters or punctuation see section Tokeniza-

tion of data.

If the first character of a token is colon :, then the rest of the token is considered

as a name of a variable and Lhogho extracts its value The next one-token ex-

pression returns the value of variable called “sample”:

:sample

In other cases, if the token is not punctuation, then it is considered as name of a

command to execute or operation to evaluate.

Logo can group tokens in larger structures called lists. The list is a sequence of

tokens or other lists framed in square brackets. Semantically, a list can represent

a sequence of words as well as a sequence of instructions.

[list of tokens]

(e) User commands and operations

The tokens to and end are used to define a new command or operation. The

syntax of such definitions starts with a header line describing the name of the

command and the names of the formal inputs. In the next example the name of

the command is sample and there are two inputs called param and state:

to sample :param :state

 :

end

The instructions that represent the essence of the command are placed following

the header line. The end of the definition is the token end.

The token learn is a synonym of to and can be used together with end:

Lhogho: The Real Logo Compiler User Documentation

 14

learn sample :param :state

 :

End

The German equivalents of to…end and learn…end are called pr…ende and

lerne…ende.

(f) Variable number of inputs

Lhogho allows the definition of local commands and operations. In the follow-

ing example function fib is local to function fibonacci and is only accessible

within its scope:

to fibonacci :x

 to fib :x

 if :x<2 [output :x] [output (fib :x-1)+(fib :x-

2)]

 end

 if :x<0 [(throw "error [Invalid input to

fibonacci])]

 output fib :x

end

print fibonacci 10

print fibonacci -4

Lhogho allows the definition of commands and operations with undefined num-

ber of inputs. Typically, Lhogho will generate an error message if a command in

used with more or less inputs that the defined one. If the list of formal inputs

ends with “...” then it is possible to provide more or less actual inputs:

to average :a ...

 local "sum

 make "sum 0

 repeat inputs [make "sum :sum+input repcount]

 output :sum/inputs

end

print (average 1 2 3 4 5)

print (average -1 1 3 5)

Note: For exemplary definitions of functions input and inputs see the docu-

mentation of _stackframe and _stackframeatom.

Lhogho: The Real Logo Compiler User Documentation

 -15-

(g) Prefix, infix and postfix notations

The order of formal inputs of a user-defined command or operation determines

whether it is prefix, infix or postfix. The following example defines a prefix op-

eration for square cube 3 x , infix operation for binomial coefficients

k

n
, and

postfix operation for factorial !n :

to sqrt3 :x

 output power :x 1/3

end

to :n over :k

 output (:n !)/(:k !)/(:n-:k !)

end

to :n !

 if :n<2 [output 1] [output :n*(:n-1 !)]

end

print sqrt3 27

print 5 over 3

print 5 !

2. Tokenization of data

Tokenization is the process of splitting Logo source code into tokens. Generally

Logo tokenizes sequences of characters in two different ways – data and com-

mand tokenization, depending whether the input is expected to contain data or

commands. These two tokenizations occur implicitly - i.e. the Logo implies

them automatically.

Tokenization of data is the process of splitting text containing data into tokens.

It is weaker than the command tokenization, because 2+3 is considered as one

word in data sequences, and three words in command sequences.

Characters can be classified into three categories: special, ordinary and

whitespaces. Special characters are those which have special meaning and

treatment. Whitespaces are the invisible characters like spaces and tabs. All oth-

er characters are ordinary.

The general rules for data tokenization are:

 Whitespaces are delimiters of words.

 New Line character is a delimiter of lines.

Lhogho: The Real Logo Compiler User Documentation

 16

 Brackets [and] are tokens by themselves.

Spaces and tabs are the most common token delimiters. Two or more of them in

a row are considered as a single delimiter.

print [Spaces and Tabs]

Spaces and Tabs

Newline characters are also considered as whitespaces in data tokenization (this

is not true for command tokenization).

Square brackets [and] are considered as single-character tokens. They are es-

sential part of the Logo syntax for representing lists.

print [List [of [] words]]

List [of [] words]

The fragment in the brackets [] is created as a sublist. Thus the tokens of

square brackets do not appear as elements of the list.

(a) Comments

Comments are fragments of the program which are ignored. Lhogho provides

two forms of comments: line and shell comments.

Lhogho uses a semicolon ; to comment the text till the end of the line excluding

the new line character. These are called line comments. Some special characters

in a comment loose their properties. For example brackets [] and bars | ... |

are treated as a part of the comment.

print "Hello ;world

Hello

Backslash \ and tilde ~ characters keep their specialty in line comments.

print "Hello ;world\

print "again

Hello

Shell comments are lines starting with #! in a Logo program which are intended

to be processed by the command shell of the operating system. Lhogho treats

these lines as comments.

#! /usr/local/bin/logo

(print "Shell "comment)

Shell comment

Lhogho: The Real Logo Compiler User Documentation

 -17-

Not all operating systems recognize shell comments, e.g. #! does not work un-

der MS DOS and Windows.

(b) Line continuation

A line can be continued onto the next line if its last visible character is tilde ~.

This is often used when a line too long.

Placed at the end of a line a tilde ~ makes it continue into the next line.

Whitespaces after the tilde are ignored. If there are other characters between the

tilde and the new line, then the tilde it is treated as ordinary character and the

whitespaces after it (if any) are not ignored:

print "Long~

word

Longword

A line with a line comment can still be continued with a tilde ~:

print "Really; Yes!~

long; comment ~

word

Reallylongword

(c) Backslashes

In many cases it is needed to include characters in a word which are otherwise

treated as special. Lhogho does this with bars |...| and backslashes \.

To include an otherwise delimiting character (including semicolon or tilde) in a

word, precede it with backslash \. To include a backslash in a word, use \\.

Backslashes turn other characters into ordinary ones - spaces, square brackets,

bars, semicolons, tildes and other backslashes.

print "Back\\slashed\ word

Back\slashed word

print "Bracket\[word

Bracket[word

If the last character of a line is a backslash, then the newline character following

the backslash will be part of the last word on the line, and the line continues on-

to the following line.

Lhogho: The Real Logo Compiler User Documentation

 18

print "Two-line\

word

Two-line

word

If the new line character at the end of a comment is backslashed, then it be-

comes a part of the comment together with the next line.

print "one;comment\

print "two

one

print "three

three

If a tilde is backslashed in a comment it becomes a part of the comment, and the

new line character is not ignored.

print "one;comment\~

one

print "two

two

print "three

three

(d) Bars

Bars are used when whitespaces or new lines must be included in a word. Inside

bars all special characters except the backslash become ordinary characters. To

include a bar inside bars use \|.

When bars are next to a word, their contents is a part of the word too. The bars

themselves are not a part of the tokenized word.

print "|bars and spaces|

bars and spaces

print "bar|s and

new lines|

bars and

new lines

All special characters except backslash \ become ordinary when placed in bars.

For example, comments and line continuations are not available inside bars as

shown in the next case:

Lhogho: The Real Logo Compiler User Documentation

 -19-

print |bar;red~

comment|

bar;red~

comment

The only way to include a bar inside bars is to backslash it.

print [|bars in |..| bars|]

bars in .. bars

print [|bars in \|..\| bars|]

bars in |..| bars

3. Tokenization of commands

Tokenization of commands is the process of splitting text containing Logo

commands into tokens. This tokenization is differs from tokenization of data be-

cause it has additional rules:

 Parentheses are delimiters.

 Mathematical operators are partial delimiters.

(a) Special characters

Special characters like " and : are not delimiters. For example words containing

them are parsed together with them. Lhogho processes " and : later on, during

compilation. Words after " are delimited by [,], (,) or whitespace.

print "1+2

1+2

Words not after " are delimited by [,], (,), whitespace or any of the infix op-

erators +, -, *, /, =, <, >, <=, >=, <>. Words starting with : fall into this catego-

ry.

print 1+2

3

(b) Parentheses

Parentheses are delimiters. They are processed as single-character tokens, but

they do not appear in the resulting abstract tree. To include a parenthesis in a

word use backslash \.

print "\(abc\)

(abc)

Lhogho: The Real Logo Compiler User Documentation

 20

(c) Infix operators

Each infix operator character is a token in itself, except that the two-character

sequences <=, >= and <> with no intervening space are recognized as a single

token.

Note: Tokenization of infix operators depends on the special character ".

(d) Templates

A non-backslashed question mark followed by a number is tokenized into a se-

quence of four tokens.

print runparse [1+?37]

1 + (? 37)

print runparse [1+\?37]

1 + ?37

Lhogho: The Real Logo Compiler User Documentation

 -21-

Chapter III. Primitives

1. Numerical operations

Numerical operations are functions and operators which process numbers (either

integer or floating-point). Integer numbers can be represented in decimal radix

and in hexadecimal radix (with the prefix 0x, e.g. 0xFF).

(a) Arithmetics

value + value
 + value

value – value
 - value

value * value

value / value

Arithmetic operators are used to add, subtract, multiply or divide numbers. They

correspond to the basic mathematical operators +, -, * and /. The + and – op-

erators can be binary or unary, while * and / are only binary.

print (1+3)*(7-4)

12

print (1+3)/(5-3)

2

Division can easily produce large numbers especially if the second input is close

to zero or is zero. When a number becomes too big it is reported as being infinity

(INF).

print -3/0

-inf

print 5/inf

0

Lhogho: The Real Logo Compiler User Documentation

 22

sum :value :value DE: summe

(sum :value :value :value …)

Function. Outputs the sum of its inputs. Can be called with arbitrary count of ar-

guments.

print (sum 1 2 3)

6

difference :value :value DE: differenz

Function. Outputs the difference of its inputs.

print difference 1 2

-1

minus :value

Function. Outputs the negative of its input.

print minus 3

-3

print minus -4

4

 product :value :value DE: produkt

(product :value :value :value …)

Function. Outputs the product of its inputs. Can be called with arbitrary count of

arguments.

print product 4 5

20

print (product 1 2 3)

6

quotient :value :value

Function. Outputs the quotient of its inputs.

print quotient (1+3) (5-3)

2

Division can easily produce large numbers especially if the second input is close

to zero or is zero. When a number becomes too big it is reported as being infinity

(INF).

print quotient 3 0

inf

Lhogho: The Real Logo Compiler User Documentation

 -23-

print quotient -3 0

-inf

remainder :value :value DE: rest

Function. Outputs the remainder on dividing its arguments. Both must be inte-

gers and the result is an integer with the same sign as first one.

print remainder 2 3

2

print remainder 5 -2

1

print remainder -5 2

-1

(b) Rounding

int :value

Function. Outputs its input with fractional part removed, i.e. an integer with the

same sign as the input, whose absolute value is the largest integer less than or

equal to the absolute value of the input.

print int 5.5

5

print int -5.3

-5

round :value DE: runde

Function. Outputs the nearest integer to the input.

print round 5.3

5

print round 5.5

6

print round -5.5

-6

(c) Exponential and logarithmic functions

sqrt :value DE: qw

Function. Outputs the square root of the input, which must be nonnegative.

Lhogho: The Real Logo Compiler User Documentation

 24

print sqrt 4

2

print sqrt 5

2.236068

power :value :value DE:potenz

Function. Outputs its first argument to the power of second argument. If first is

negative, then second must be an integer.

print power 2 2

4

print power 4 0.5

2

exp :value

Function. Outputs e=2.718281828… to the input power.

print exp 1

2.718282

print exp -1

0.367879

log10 :value

Function. Outputs the common logarithm of the input.

print log10 100

2

print log10 12345

4.091491

ln :value

Function. Outputs the natural logarithm of the input.

print ln 10

2.302585

abs :value

Function. Outputs the absolute value of the input.

print abs 5

5

Lhogho: The Real Logo Compiler User Documentation

 -25-

print abs -5

5

(d) Trigonometric functions

pi

Function. Outputs the number .

print pi

3.141593

sin :value

cos :value

Functions. Output the sine or the cosine of their inputs, which are taken in de-

grees.

print sin 45

0.707107

print cos 10

0.984808

radsin :value

radcos :value

Functions. Output the sine or the cosine of their inputs, which are taken in radi-

ans.

print radsin (pi/4)

0.707107

print radcos (-pi/2)

0

 arctan :value
(arctan :value :value)

Function. Outputs the arctangent, in degrees, of its input. If there are two inputs

outputs the arctangent in degrees of y/x, where x is first argument of function,

and y is second.

print arctan sqrt 2

54.73561

print (arctan 1 1)

45

Lhogho: The Real Logo Compiler User Documentation

 26

 radarctan :value
(radarctan :value :value)

Function. Outputs the arctangent, in radians, of its input. If there are two inputs

outputs the arctangent in radians of y/x, where x is first argument of function,

and y is second.

print radarctan sqrt 2

0.955317

print (radarctan 1 1)

0.785398

(e) Random numbers

 random :max DE: zufallszahl, zz
 random :list
(random :min :max)

Function. If called with one argument and argument is a number then outputs a

random number between 0 and max.

If called with one argument list, outputs a randomly selected element of the list.

This functionality is available only when Lhogho is in extended, non-traditional

mode.

If called with two arguments, outputs an integer number between min and max

inclusive. Value min must be nonnegative and less or equal to max.

print random 4

0

print random [1 2 3]

3

print (random 4 6)

5

 rerandom DE: startezufall, sz
(rerandom :num)

Command. Makes the results of random reproducible. Usually the sequence of

random numbers is different each time Lhogho is started, unless rerandom is

used.

If called with no arguments, sets same sequence each time. If you need the more

than one sequence of pseudo-random numbers repeatedly, you can give reran-

dom an integer input which selects a unique sequence of pseudo-random num-

bers.

Lhogho: The Real Logo Compiler User Documentation

 -27-

rerandom

(print random 4 random 4 random 4)

2 0 3

rerandom

(print random 4 random 4 random 4)

2 0 3

(f) Sequences

Functions for generating sequences return a list of numbers within a given range.

These functions could be entirely written in Lhogho, but are also defined as

primitives for higher performance.

iseq :from :to

Function. Outputs a list of the integers between from and to, inclusive.

print iseq 5 10

5 6 7 8 9 10

rseq :from :to :count DE: lseq

Function. Outputs a list of count equally spaced rational numbers between

from and to, inclusive.

print rseq 5 3 5

5 4.5 4 3.5 3

(g) Operations with bits

lshift :number :bits DE: lwechsel

Function. Outputs number logical-shifted to the left by bits bits. If bits is

negative, the shift is to the right with zero fill. Both inputs must be integers.

print lshift 1 2

4

print lshift 16 -2

5

ashift :number :bits DE: awechsel

Function. Outputs number arithmetic-shifted to the left by bits bits. If bits is

negative, the shift is to the right with sign extension. Both inputs must be inte-

gers.

Lhogho: The Real Logo Compiler User Documentation

 28

print ashift 1 2

4

print ashift -16 -2

-4

 bitand :value :value DE: bitund
(bitand :value :value :value …)

Function. Outputs the bitwise and of its inputs, which must be integers.

print bitand 7 12

4

 bitor :value :value DE: bitoder
(bitor :value :value :value …)

Function. Outputs the bitwise or of its inputs, which must be integers.

print bitor 7 12

15

 bitxor :value :value DE: bitxoder
(bitxor :value :value :value …)

Function. Outputs the bitwise exclusive or of its inputs, which must be integers.

print bitxor 7 12

11

bitnot :value DE: bitnicht

Function. Outputs the bitwise not of its input, which must be integer.

print bitnot 3

-4

2. Predicates and Boolean operations

(a) Compare predicates

Predicates are functions and operators which are used to test if their input pa-

rameters has specific properties or are in specific relations. Predicates return

Boolean values as result.

Lhogho: The Real Logo Compiler User Documentation

 -29-

:value = :value

 equalp :value :value DE: gleichp
 equal? :value :value DE: gleich?

Operator and function. Outputs true if the inputs are equal, false otherwise.

Two numbers are equal if they have the same numeric value. Two non-numeric

words are equal if they contain the same characters in the same order. If there is

a variable named caseignoredp whose value is true, then an upper case let-

ter is considered the same as the corresponding lower case letter which is the

case by default. Two lists are equal if their members are equal.

print 5 = "5

true

print equal? "One "two

false

:value <> :value

 notequalp :value :value DE: ungleichp
 notequal? :value :value DE: ungleich?

Operator and function. Outputs false if the inputs are equal, true otherwise.

print 5 <> "5

false

print notequal? "One "two

true

:value < :value

 lessp :value :value DE: kleinerp
 less? :value :value DE: kleiner?

Operator and function. Outputs true if its first input is strictly less than its sec-

ond. Inputs must be numbers.

print 5 < 10

true

print less? 5 5

false

Lhogho: The Real Logo Compiler User Documentation

 30

:value > :value

 greaterp :value :value DE: größerp
 greater? :value :value DE: größer?

Operator and function. Outputs true if its first input is strictly greater than its

second. Inputs must be numbers.

print 15 > 10

true

print greater? 5 5

false

:value <= :value

 lessequalp :value :value DE: kleinergleichp
 lessequal? :value :value DE: kleinergleich?

Operator and function. Outputs true if its first input is less than or equal to its

second. Inputs must be numbers.

print 5 <= 10

true

print lessequal? 5 5

true

:value >= :value

 greaterequalp :value :value DE: größergleichp
 greaterequal? :value :value DE: größergleich?

Operator and function. Outputs true if its first input is greater than or equal to

its second. Inputs must be numbers.

print 5 >= 10

false

print greaterequal? 5 5

true

beforep :value :value DE: vorherp
before? :value :value DE: vorher?

Function. Outputs true if first argument comes before second in ASCII collat-

ing sequence. Case-sensitivity is determined by the value of caseignoredp.

Note: if the inputs are numbers, the result may not be the same as with less?.

print beforep 3 12

Lhogho: The Real Logo Compiler User Documentation

 -31-

false

print before? "one "two

true

(b) Type predicates

wordp :value DE: wortp
word? :value DE: wort?

Function. Outputs true if the input is a word, false otherwise.

print wordp "123

true

print word? [123]

false

listp :value DE: listep
list? :value DE: liste?

Function. Outputs true if the input is a list, false otherwise.

print listp "123

false

print list? 123

true

numberp :value DE: zahlp
number? :value DE: zahl?

Function. Outputs true if the input is a number, false otherwise.

print numberp 123

true

print number? [123]

false

emptyp :value DE: leerp
empty? :value DE: leer?

Function. Outputs true if the input is the empty list or the empty word, false

otherwise.

print emptyp "123

false

print empty? [123]

true

Lhogho: The Real Logo Compiler User Documentation

 32

backslashedp :char DE: backslashp
backslashed? :char DE: backslash?

Function. Outputs true only if the input is a character which has been back-

slashed or barred. Characters which do not need to be backslashed or barred are

always reported as non-backslashed even if they were actually backslashed. The

backslashable characters are: +, -, *, /, =, <, >, (,), | and? .

print backslashed? item 4 "123-456\-789

false

print backslashed? item 8 "123-456\-789

true

(c) Inclusion predicates

memberp :elem :value DE: elementp, elp
member? :elem :value DE: element?, el?

Function. If value is a list, outputs true if elem is equal? to any member of

value, false otherwise. If value is a word, outputs true if elem is a one-

character word equal? to a character of value, false otherwise.

print member? 345 [123 345 567]

true

print memberp "a 123

false

substringp :text1 :text2
substring? :text1 :text2

Function. Outputs true if text1 is a substring of text2. If inputs are not

words outputs false.

print substringp 123 456123456

true

(d) Logical functions

 and :value :value DE: und
(and :value :value :value …)

 all? :value :value DE: alle?
(all? :value :value :value …)

Function. Outputs true if all the inputs are true, false otherwise.

print and 1 < 2 3 = 3

Lhogho: The Real Logo Compiler User Documentation

 -33-

true

print (and 1 < 2 3 <> 4 5 = 5)

true

 or :value :value DE: oder
(or :value :value :value …)

 any? :value :value DE: eines?
(any? :value :value :value …)

Function. Outputs false if all the inputs are false, true otherwise.

print or 1 > 2 3 <> 3

false

print (or 1 < 2 3 = 4 5 = 5)

true

not :value DE: nicht

Function. Outputs false if argument is true, true if argument is false.

print not (1 > 2)

true

3. Word and list operations

(a) Selectors

Selectors are functions that extract part of its input. The input must be word or

list.

first :value DE: erstes, er

Function. If the input is a word, outputs the first character of the word. If the in-

put is a list, outputs the first member of the list.

print first 123

1

print first [abc xyz]

abc

firsts :list DE: alleerstes, aer

Function. Outputs a list containing the first of each member of the input list.

It is an error if any member of the input list is empty. The input itself may be

empty, in which case the output is also empty.

Lhogho: The Real Logo Compiler User Documentation

 34

print firsts [123 456 789]

1 4 7

butfirst :value DE: ohneerstes
bf :value DE: ое

Function. If the input is a word, outputs a word containing all but the first char-

acter of the input. If the input is a list, outputs a list containing all but the first

member of the input.

print butfirst 123

23

print bf [abc xyz klmn]

xyz klmn

butfirsts :list DE: ohneerstesalle
bfs :list DE: оеа

Function. Outputs a list containing the butfirst of each member of the input

list. It is an error if any member of the input list is empty. The input itself may

be empty, in which case the output is also empty.

print butfirsts [123 456 789]

23 56 89

last :value DE: letztes, lz

Function. If the input is a word, outputs the last character of the word. If the in-

put is a list, outputs the last member of the list.

print last 123

3

print last [abc xyz]

xyz

butlast :value DE: ohneletztes
bl :value DE: ol

Function. If the input is a word, outputs a word containing all but the last char-

acter of the input. If the input is a list, outputs a list containing all but the last

member of the input.

print butlast 123

12

print bl [abc xyz klmn]

abc xyz

Lhogho: The Real Logo Compiler User Documentation

 -35-

item :index :value DE: element, el

Function. If value is a word, outputs the index-th character of the word. If

value is a list, outputs the index-th member of the list. index starts at 1.

print item 1 "abc

a

print item 2 [abc xyz klmn]

xyz

member :elem :value DE: elementab

Function. If value is a word, outputs a subword starting from the first occur-

rence of elem to the end or empty word if elem is not member of value. If

value is a list, outputs a new list containing elements of value starting from

the first occurrence of elem to the end or empty list it elem is not member of

value.

print member "e "Test

est

print member 2 [1 2 3]

2 3

substring :text1 :text2

Function. Outputs the position of text1 in text2 or outputs 0 if text1 is not a

substring of text2. Both inputs must be words.

print substring [ope] "onomatopeia

7

print substring "a "onomatopeia

5

print substring "b "onomatopeia

0

pick :list DE: picke

Function. Outputs randomly selected element of its input, which must be a list.

print pick [1 2 3]

2

print pick [1 2 3]

1

Lhogho: The Real Logo Compiler User Documentation

 36

remdup :value DE: entfdup

Function. Outputs a copy of value with duplicate members removed. If two or

more members of the input are equal, the rightmost of those members is the one

that remains in the output.

print remdup [1 2 1 3 2 1 4 2 5 1 6 1]

3 4 2 5 6 1

print remdup "121321425161

342561

remove :elem :value DE: entferne

Function. Outputs a copy of value with every member equal to elem removed.

print remove 1 [1 2 1 3 2 1 4 2 5 1 6 1]

2 3 2 4 2 5 6

print remove 1 121321425161

2324256

(b) Constructors

 word :value :value DE: wort
(word :value :value :value …)

Function. Outputs a word formed by concatenating its inputs.

print word "Hello "-World

Hello-World

 list :value :value DE: liste
(list :value :value :value …)

Function. Outputs a list whose members are its inputs, which can be any word or

list.

print list "test 123

test 123

print (list [123] [123 123] "123)

[123] [123 123] 123

 sentence :value :value DE: satzbilden
(sentence :value :value :value …)
 se :value :value DE: satz
(se :value :value :value …)

Function. Outputs a list whose members are its word-inputs that are words and

the members of its list-inputs.

Lhogho: The Real Logo Compiler User Documentation

 -37-

print (se [12] [34 56] "78)

12 34 56 78

lastput :value1 :value2 DE: mitletztem
lput :value1 :value2 DE: ml

Function. If the second input is a list outputs a list equal to its second input with

one extra member, the first input, at the end. If the second input is a word, then

the first input must be a one-letter word, outputs word equal to second argument,

but with first input appended to the end.

print lput 1 123

1231

print lput [1 2 3] [1 2 3]

1 2 3 [1 2 3]

firstput :value1 :value2 DE: miterstem
fput :value1 :value2 DE: me

Function. If the second input is a list outputs a list equal to its second input with

one extra member, the first input, at the beginning. If the second input is a word,

then the first input must be a one-letter word, outputs word equal to second ar-

gument, but with first argument inserted at the beginning.

print fput 1 123

1123

print fput [1 2 3] [1 2 3]

[1 2 3] 1 2 3

reverse :value DE: umkehrung

Function. If value is a list, outputs a list whose members are the members of

the input list, in reverse order. Otherwise outputs a word with the reversed order

of characters of value.

print reverse [1 2 3 4 5 6 7]

7 6 5 4 3 2 1

print reverse "abcde

edcba

combine :value1 :value2 DE: kombinieren

Function. If value2 is a word, works like word :value1 :value2. If val-

ue2 is a list, works like fput :value1 :value2.

print combine 1 [1 2 3]

Lhogho: The Real Logo Compiler User Documentation

 38

1 1 2 3

print combine "Hello "-World

Hello-World

gensym DE: gisym

Function. Outputs a unique word each time it's invoked. The words are of the

form G1, G2, etc.

print gensym

G1

print gensym

G2

quoted :value DE: zitiert

Function. If value is a list outputs value otherwise outputs value with quota-

tion mark prepended.

print quoted 123

"123

(c) Transformers

count :value DE: länge, anzahl

Function. Outputs the number of characters in value, if it is a word; or the

number of members, if it is a list;

print count "Test

4

char :value DE: zeichen

Function. Outputs the character represented in the ASCII code by value, which

must be an integer between 0 and 255.

print char 67

C

ascii :value DE: asc

Function. Outputs an integer (between 0 and 255) that represents the input char-

acter value in the ASCII code. Interprets some control characters as represent-

ing punctuation in bars |…|, and returns the character code for the correspond-

ing punctuation character itself without vertical bars.

print ascii "a

Lhogho: The Real Logo Compiler User Documentation

 -39-

97

rawascii :value DE: ascii

Function. Outputs an integer (between 0 and 255) that represents the input char-

acter value in the ASCII code.

print rawascii "|(|

14

uppercase :value DE: großschrift, groß

Function. Outputs a copy of the input word, but with all lowercase letters

changed to the corresponding uppercase letters.

print uppercase "Test

TEST

lowercase :value DE: kleinschrift, klein

Function. Outputs a copy of the input word, but with all uppercase letters

changed to the corresponding loweracase letters.

print lowercase "Test

test

(d) Formatting

form :num :width :precision

Function. Outputs a word containing a printable representation of num, possibly

preceded by spaces, with at least width characters, including exactly preci-

sion digits after the decimal point. If precision is -1 interprets width like

format string.

(print "! form 3.1415926 20 5)

! 3.14159

(print "! form 3.1415926 "|%.15lf| -1)

! 3.141592600000000

format :data :format

Function. Outputs a word containing a printable representation of data, accord-

ing to format string. For a list of supported date and time format string see

Format strings at page 119.

(print "! format 1234567 "%.8X)

! 0012D687

Lhogho: The Real Logo Compiler User Documentation

 40

formattime :data :format DE: zeitformat

Function. Outputs a word containing a printable representation of data, accord-

ing to format string. The data is an integer number containing time measured

in seconds elapsed since 00:00:00 on January 1, 1970. For a list of supported

date and time format string see Format strings at page 119.

make "time first filetimes "lhogho.exe

print formattime :time "|%d-%b-%Y %H:%M:%S|

23-Jan-2012 13:12:16

timezone DE: zeitzone

Function. Outputs the number of seconds between the local time and the corre-

sponding GMT time. The number is positive for time zones ahead of GMT, and

negative otherwise. For example, if the system’s time zone is GMT+2, then the

function returns 7200 (=2*60*60)

print timezone

7200

4. Control structures

Control structures determine how user program is executed – this includes loops,

conditional execution, passing result from callee to caller, and so on.

(a) Conditional execution

if :condition :command-list DE: wenn
if :condition :command-list :command-list

Command. If the condition is true then if executes the first command-list.

If the condition is false and there is a second command-list, then if executes

it.

to neg? :x

 if :x=0

 [(print :x [is zero])]

 if :x<0

 [(print :x [is negative])]

 [(print :x [is not negative])]

end

neg? 5

5 is not negative

Lhogho: The Real Logo Compiler User Documentation

 -41-

if :condition :expression-list :expression-list
 DE: wenn

Function. When used as a function if has three inputs. The last two are lists

containing an expression each. The value of one of these expressions is the out-

put of the if function.

repeat 4 [print repcount*if repcount>2 [1] [-1]]

-1

-2

3

4

ifelse :condition :command-list :command-list
 DE: wennsonst

Command. The command ifelse is equivalent to the command if and the on-

ly difference is that ifelse expects exactly two command-lists, while if ac-

cepts either one or two.

ifelse :condition :expression-list :expression-list
 DE: wennsonst

Function. The function ifelse is equivalent to the function if.

test :condition

Command. The command test remembers the condition which must be either

true or false. The condition is later used by commands iftrue and if-

false.

make "a sin 45

test :a>0.5

iftrue [print [sin(45) > 0.5]]

sin(45) > 0.5

iftrue :commands DE: wennwahr, ww

Command. Executes the commands if the input of the latest test command

within the current procedure was true.

iffalse :commands DE: wennfalsch, wf

Command. Executes the commands if the input of the latest test command

within the current procedure was false.

Lhogho: The Real Logo Compiler User Documentation

 42

(b) Loops

repeat :count :command-list DE: wiederhole, wh

Command. Executes the command-list count number of times. The number

of repetitions must be an integer number from 0 to 2147483647 inclusive. In

case of 0 the command-list is not executed.

make "a 1

repeat 3

[

 (print (word :a "* :a) "= :a*:a)

 make "a :a+1

]

1*1 = 1

2*2 = 4

3*3 = 9

repcount DE: whzahl

Function. It is used only inside repeat loop and returns the iteration number of

this loop. The first iteration is number 1.

repeat 3 [print repcount]

1

2

3

forever :command-list DE: andauernd

Command. Executes the command-list forever. This infinite cycle can be ex-

ited with stop or output commands only.

make "a 1

forever

[

 print int :a

 if :a>100 [output]

 make "a pi*:a

]

1

3

9

Lhogho: The Real Logo Compiler User Documentation

 -43-

31

97

306

for :var :limits :command-list DE: für.bis

Command. Executes the command-list predefined number of times. The first

input must be a word literal, which will be used as the name of a control variable.

The second input must be a list of two or three expressions – the starting value

of the control variable, the limit value of the variable; and optionally the step

size. If the third member is missing, the step size will be 1 or -1 depending on

whether the limit value is greater than or less than the starting value, respective-

ly. The third input is a list of commands. The effect of for is to run command-

list repeatedly, assigning a new value to the control variable each time.

for "i [1 4]

[

 (type :i "-)

 for "j [1 :i] [type :j]

 print

]

1-1

2-12

3-123

4-1234

while :condition :command-list DE: .solange

Command. Executes the command-list while the condition is true. If the

first evaluation of the condition is false, then the command-list is not ex-

ecuted at all.

make "a 1

make "n 1

while :a<10

[

 (print word "2^ :n "= :a)

 make "a 2*:a

 make "n :n+1

]

2^1 = 1

Lhogho: The Real Logo Compiler User Documentation

 44

2^2 = 2

2^3 = 4

2^4 = 8

do.while :command-list :condition
 DE: führeaus.solange

Command. The command do.while is the same as while, only the order of

inputs is reversed and the command-list is executed once before the first

check of the condition.

until :condition :command-list DE: .bis

Command. Executes the command-list until the condition becomes true.

If the first evaluation of the condition is true, then the command-list is not

executed at all.

make "a 1

make "n 1

until :a>=10

[

 (print word "2^ :n "= :a)

 make "a 2*:a

 make "n :n+1

]

2^1 = 1

2^2 = 2

2^3 = 4

2^4 = 8

do.until :command-list :condition DE: führeaus.bis

Command. The command do.until is the same as until, only the order of

inputs is reversed and the command-list is executed once before the first

check of the condition.

(c) Execution

run :instructions DE: tue

Command and function. Runs the instructions which must be a list. If the

instructions are commands, then return nothing. Otherwise, if the instruc-

tions is a list containing an expression, evaluate it and return its value.

Lhogho: The Real Logo Compiler User Documentation

 -45-

run [print 2*3]

6

print run [2*3]

6

runresult :instructions DE: tuewert

Function. Runs the instructions which must be in a list. If the instructions

are commands, then return an empty list. Otherwise, if the instructions is a

list containing an expression, evaluate it and return a list containing its value.

make "x 10

print runresult [print :x*:x]

100

print runresult [:x*:x]

100

runmacro :instructions DE: tuemakro

Command. Runs the instructions which must be a list. Variables, functions

and commands created as local entities inside runmacro persist after the end of

the execution of instructions.

runmacro [

 local "a

 make "a 5

 to double :x

 output 2*:x

 end]

run [

 print :a

 print double 4

]

5

8

load :filename DE: lade

Command. Runs the instructions in a text file with a given filename as if they

are included in the place of the load command. The filename may include

relative or absolute path. If there is no path then the file is searched in the cur-

rent folder. If there is relative path, it is relative to the current folder. If the file is

Lhogho: The Real Logo Compiler User Documentation

 46

not found, then it is searched in the lib subfolder of the folder where the com-

piler is located.

Note: Lhogho processes the load command during parsing, i.e. before actually

running the program. This requires that the filename is a literal constant.

If LIB.LGO contains these commands :

make "libver "1.2beta

to max :a :b

 if :a>:b [output :a] [output :b]

end

then it can be loaded by load command:

load "lib.lgo

(print "Version :libver)

Version 1.2beta

print max 6 10

10

(d) Exits and tags

output :value DE: rückgabe
op :value DE: rg

Command. Ends the execution of the current function and returns to the caller

the value of its input. Note that output is not a function and it does not return a

value – it forces the current function to end and return a value.

to mysqr :x

 output :x*:x

end

print mysqr 2

4

maybeoutput :source DE: magseinrückgabe

Function or Command. Ends the execution of the current function and returns to

the caller the value of its input (if any). If source is an expression, then

maybeoutput acts like output. If source is not an expression, then

maybeoutput acts like stop.

to func :pattern :x

 maybeoutput run :pattern

Lhogho: The Real Logo Compiler User Documentation

 -47-

end

print func [:x*sin :x] 30

15

func [print :x*sin :x] 30

15

stop DE: rückkehr, rk

Command. Ends the execution of the current function without passing any re-

turn value.

to mysqr :x

 (print "x "= :x*:x)

 stop

 print [Beyond stop]

end

mysqr 2

x = 4

bye DE: ade

Command. This command is used to terminate program execution.

print [Before bye]

Before bye

bye

print [Never reach this code]

tag :word DE: schildchen

Command. The tag command defines a place within the current procedure.

This place can be used by the goto command to change the execution path. The

name of the tag must be a quoted word. Tags are always local to the procedure

where they are defined.

make "a 1

tag "again

make "a 3*:a

if :a<30 [goto "again]

3

9

27

Lhogho: The Real Logo Compiler User Documentation

 48

goto :word DE: gehe

Command. The goto command forces the execution to continue from the place

named by a tag. The tag could be a quoted word or an expression which value is

the name of an existing tag. Tags are always local to the procedure where they

are defined, so it is not possible to jump from one procedure to another.

(e) Miscallaneous

ignore :value DE: ignoriere

Command. This command is used to evaluate an expression and ignore its value.

This operation makes sense only if the evaluation of the expression has side ef-

fects, which are not ignored.

to mysqr :x

 (print "x "= :x*:x)

 output :x*:x

end

ignore mysqr 2

x = 2

wait :value DE: warte

Command. This command is used to suspend program execution for value 60
ths

of a second.

print [Sleeping for 5 seconds]

Sleeping for 5 seconds

wait 300

print [After sleep]

After sleep

5. Files and folders

Commands and function for files and folders are used to work with the directory

structure. All names of folders are words that may contain just a folder’s name,

a relative folder path or an abstract folder path. There are two folders with spe-

cial names: the folder called . represents the current folder, and .. represents

the parent folder.

Lhogho: The Real Logo Compiler User Documentation

 -49-

(a) Folders

currentfolder DE: aktuellerordner

Function. Returns a word containing the name of the current folder.

print currentfolder

D:\lhogho\

changefolder :name DE: ändereordner

Command. Changes the current folder.

print currentfolder

c:\lhogho\

changefolder "..

print currentfolder

c:\

makefolder :name DE: setzeordner

Command. Creates a new folder with a given name. The new folder is placed in

the current folder unless name contains relative or absolute path.

The following example creates two folders: main in the current folder, and fold-

er other in main.

makefolder "main

makefolder "main/other

erasefolder :name DE: löscheordner

Command. Erases a folder with a given name. The folder must be empty, other-

wise the folder will not be erased.

The following example deletes two folders. Note, that other is erased before

main.

erasefolder "main/other

erasefolder "main

renamefolder :name :newname DE: umbenennenordner

Command. Renames a folder with a given name to a new name given in

newname.

renamefolder "main "mainobj

Lhogho: The Real Logo Compiler User Documentation

 50

folder? :name DE: ordner?
folderp :name DE: ordnerp

Function. If name is a valid name (or path) of a folder and this folder exists,

outputs true, otherwise false.

print folder? "lhogho.exe

false

makefolder "main

print folder? "main

true

folders :name DE: ordner

Function. Returns a list of the names of all folders in a folder with a given name.

The order of the names in the returned list is undefined.

makefolder "main

makefolder "main/this

makefolder "main/that

print folders "main

. .. that this

To get a list of folders in the current folder use one of the following two ways:

print folders currentfolder

print folders ".

(b) Files

files :name

Function. Returns a list of the names of all files in a folder with a given name.

The order of the names in the returned list is undefined.

print files "main

To get a list of files in the current folder use one of the following two ways:

print files currentfolder

print files ".

file? :name DE: Datei?
filep :name DE: Datei

Function. If name is a valid name (with or without path) of an existing file then

outputs true, otherwise false.

print file? "readme.txt

Lhogho: The Real Logo Compiler User Documentation

 -51-

erasefile :name DE: löschedatei

erf :name DE: vgdatei

Command. Erases a file with a given name.

erasefile "readme.txt

renamefile :name :newname DE: umbenennendatei

Command. Renames a file with a given name to a new name given in newname.

renamefile "readme.txt "readmenow.txt

filesize :name DE: dateigröße

Function. Returns the size of a file with given name. The size is measured in

bytes. If a file with such name does not exist or is inaccessible, then outputs -1.

print filesize "readme.txt

filetimes :name DE: dateizeiten

Function. Returns a list of three integer numbers representing the times of a file

with given name. The times are: time of file creation, time of last modification

and time of last access.. If a file with such name does not exist or is inaccessible,

then outputs an empty list.

The times represent the number of seconds elapsed since 00:00:00 on January 1,

1970. They can be converted into a calendar time with formattime.

make "time filetimes "lhogho.exe

print :time

1327317136 1327328139 1327330287

print formattime first :time "|%d-%b-%Y|

23-Jan-2012

(c) Opening and closing files

Whenever you want to work with the content of a file it must be first open with

the command openfile or one of its variations: openread, openwrite,

openappend and openupdate. The successful opening of a file generates a

unique number called handle which is used to manage the content of the file.

There is a system defined number of maximal 20 simultaneously opened files. A

list of the names of all opened files can be retrieved with allopen.

Some file operations may use either file handles or file names to identify a file.

Lhogho does not know which one is actually used, so it first searches for opened

handles, and if not found it searches for opened file names.

Lhogho: The Real Logo Compiler User Documentation

 52

When the managing of the file content is done, the file must be closed with the

commands closefile or closeall. Closing a file releases a slot so that a

new file can be opened. When Lhogho exits it will automatically close all

opened files.

openfile :filename :mode DE: öffnedatei

Function or command. Opens a file with given filename. The mode deter-

mines how the file is opened and what operations will be performed on it:

r opens an existing file for reading

w opens (or creates) a file for writing

a opens (or creates) a file for appending

r+ opens an existing file for reading and writing

w+ opens (or creates) a file for reading and writing

a+ opens (or creates) a file for reading and appending

An additional character may appear after these:

 x does not allow openfile to overwrite existing file

 b the file is a binary file

If openfile is used as a function, then the returned value of is an OS-

dependent file handle (i.e. a number), which identifies the file. This handle

maybe used by the other file functions.

If openfile is used as a command, then the file handle is not returned. Other

commands that refer to the opened file should use its name.

openread :filename DE: öffnenlesen

Function or command. Opens a file with a given filename for reading. The

read position is initially at the beginning of the file. The function is equivalent to

openfile with mode r.

openwrite :filename DE: öffnenschreiben

Function or command. Opens a file with a given filename for writing. If the

file already existed, the old version is deleted and a new, empty file created. The

function is equivalent to openfile with mode w.

openappend :filename DE: öffnenanhängen

Function or command. Opens a file with a given filename for appending. If

the file already exists, the write position is initially set to the end of the old file,

Lhogho: The Real Logo Compiler User Documentation

 -53-

so that newly written data will be appended to it. The function is equivalent to

openfile with mode a.

openupdate :filename DE: öffnenaktualisieren

Function or command. Opens a file with a given filename for updating. The

read and write positions are initially set to the end of the old file, if any. The

function is equivalent to openfile with parameter mode r+.

allopen DE: allesoffen

Function. Outputs a list of the names of all files opened with any of the func-

tions openfile, openread, openwrite, openappend or openupdate. The

names are not ordered.

closefile :file DE: schließedatei

Command. Closes a file opened with openfile. The input must be either a

name of an opened file or a valid file handle.

closeall DE: schließealles

Command. Closes all files opened with any of the functions openfile, open-

read, openwrite, openappend or openupdate.

(d) Accessing file contents

The functions for accessing the file content work only with already opened files.

Some file operations use file handles as input. If they cannot find opened file

with this handle, they assume that the input is a name of a file and search the list

of opened files by name.

For historical reasons Lhogho assign roles of two of the files:

Reading file – this is a file from which reading is done. At every moment there

is at most one reading file. By default, reading is done from the default input de-

vice (usually the terminal or the keyboard).

Writing file – this is a file to which writing is done. At every moment there is at

most one writing file. By default, writing is done to the default output device

(usually the terminal or the console window).

Setting and querying the roles of the files is done by reader, writer,

setread, and setwrite. If a reading/writing file is a true file (i.e. it is not the

terminal), then it is possible to set or to query the reading/writing position with

readpos, writepos, setreadpos, and setwritepos.

Lhogho: The Real Logo Compiler User Documentation

 54

The function eof? can be used to check whether there is more text data to read

from the current input. If the input is the terminal, the typing of Ctlr-Z (for Win-

dows) or Ctrl-D (for Linux) is considered as the end of the input.

Follows an example of writing the numbers 1 to 10 and their squares into the

text file square.txt:

make "file openwrite "square.txt

setwrite :file

for "i [1 10] [(print :i "* :i "= :i*:i)]

closefile :file

The contents of square.txt file will be:

1 * 1 = 1

2 * 2 = 4

3 * 3 = 9

4 * 4 = 16

5 * 5 = 25

6 * 6 = 36

7 * 7 = 49

8 * 8 = 64

9 * 9 = 81

10 * 10 = 100

The next example shows how to read line-by-line the already created

square.txt text file and print its content to the terminal. The example as-

sumes the number of lines in the text file is unknown.

make "file openread "square.txt

setread :file

while not eof? [print readword]

closefile :file

setread :file DE: setzelesen

Command. Makes an opened file the default file for reading. If file is the emp-

ty list, then reading is done from the default input device (e.g. the terminal), oth-

erwise file must be either a name or a handle of an opened file. Changing the

reading does not close the file that was previously used for reading, so it is pos-

sible to alternate between files.

setwrite :file DE: setzeschreiben

Command. Makes an opened file the default file for writing. If file is the emp-

ty list, then writing is done to the default output device (e.g. the terminal or the

Lhogho: The Real Logo Compiler User Documentation

 -55-

console), otherwise file must be either a name or a handle of an opened file.

Changing the writing does not close the file that was previously used for writing,

so it is possible to alternate between files.

reader DE: leser

Function. Outputs the name of the file currently used for reading, or the empty

list if reading is done from the default input device (e.g. the terminal or the con-

sole).

writer DE: schreiber

Function. Outputs the name of the file currently used for writing, or the empty

list if writing is done to the default output device (e.g. the terminal or the con-

sole).

setreadpos :position DE: setzeleseort

Command. Sets the reading position of the current reading file to a given posi-

tion. The first byte of a file has position 0.

setwritepos :position DE: setzeschreibeort

Command. Sets the writing position of the current writing file to a given posi-

tion. The first byte of a file has position 0.

readpos DE: leseort

Function. Outputs the current reading position of the reading file.

writepos DE: schreibeort

Function. Outputs the current writing position of the writing file.

(e) Text input/output

Lhogho supports several commands to write text to the console or to a file; as

well as several functions to read text from the console or from a file. Initially

text reading and text writing is associated with the terminal or the console.

If setwrite defines a writing file, then the text output commands print,

type and show will start writing text to that file. If setread defines a reading

file, then the text input functions readchar, readchars, readrawline,

readword and readlist will start reading text from that file.

Lhogho: The Real Logo Compiler User Documentation

 56

print :value DE: druckezeile
(print :value :value ...)
 pr :value DE: dz
(pr :value :value ...)

? :value
(? :value :value ...)

Command. Prints its input(s) to the current output device. The command can ac-

cept more inputs, and in this case they are printed separated by a space. After

each print a newline character is automatically printed. If the input is a list the

outer square brackets are omitted. A print without any inputs creates an empty

line.

print "a

a

(print "a "b "c)

a b c

The actual printed text depends on the values of variables printdepthlimit,

printwidthlimit and fullprintp.

 type :value DE: drucke, dr
(type :value :value …)

Command. Prints its input(s) like print, except that no newline character is

printed at the end and multiple inputs are not separated by spaces.

(type 12 [1 2 3] "test)

type [1 2 3]

121 2 3test1 2 3

 show :value DE: zg
(show :value :value …)

Command. Prints its input(s) like print, except that outermost square brackets

of lists are printed.

show [1 2 3]

[1 2 3]

readchar DE: lieszeichen
rc DE: lzeichen

Function. Reads a character from the standard input (usually the keyboard) and

returns it as a word. If there are no more characters returns an empty list or waits

for the user to type a character. Note that depending on the input policy of the

operating system characters typed at the command prompt could be made avail-

Lhogho: The Real Logo Compiler User Documentation

 -57-

able to readchar only when a complete line has been entered by pressing the

[Enter] key.

Readchar function does not process any special characters.

readchars :number DE: lieszeichenkette
rcs :number DE: lzk

Function. Reads number characters from the standard input (usually the key-

board) and returns them as a word. If there are no more characters returns an

empty list or waits for the user to type characters. Note that depending on the

input policy of the operating system characters typed at the command prompt

could be made available to readchars only when a complete line has been en-

tered by pressing the [Enter] key.

Readchars function does not process any special characters.

readrawline DE: liestasten

Function. Reads a line from the standard input (usually the keyboard) and re-

turns it as a word. If there are no more characters returns an empty list or waits

for the user to type characters.

Readrawline function does not process any special characters.

readword DE: lieswort
rw DE: lw

Function. Reads a line from the standard input (usually the keyboard) and re-

turns it as a word. If the word contains backslashes \ or vertical bars |…| then

they are processed according to the data tokenization rules of Lhogho. If there

are no more characters readword returns an empty list or waits for the user to

type characters.

readlist DE: liesliste
rl DE: ll

Function. Reads a line from the standard input (usually the keyboard) and re-

turns it as a list. All special characters except for the semicolon ; are processed

according to the data tokenization rules of Lhogho. If there are no more charac-

ters readword returns an empty word (not an empty list) or waits for the user to

type characters.

eof? DE: dateiende?
eofp DE: dateiendep

Function. Outputs true if there are no more characters to be read from the

standard input, false otherwise.

Lhogho: The Real Logo Compiler User Documentation

 58

dribble :filename

Command. Creates a new text file with a given filename and begins recording

in that file everything that is read from the keyboard or written to the terminal.

This writing is in addition to the writing to the writer file. Using dribble while

there is an active dribble file will first close it and then will create the new drib-

ble file.

nodribble

Command. Stops copying information into the dribble file, and closes the file.

(f) Binary input/output

Operations for reading and writing from binary files require that the files are

opened with openfile with mode referring explicitly binary files (e.g. rb or

wb). Using the other file opening commands (openread, openwrite, etc.)

may case wrong data to be transferred, because it is treated as text – some bytes

have special meaning in text files, like LF (Line feed), CR (Carriage return) and

others.

Binary input and output in Lhogho uses blocks to transfer binary data. For more

information about blocks refer to page 73.

readblock :size DE: liespackung

readblock :blockdef

Function. Reads size bytes from the current reading file and returned them in a

newly allocated memory block. If there are not enough data in the file or if the

reading file is the default input device (usually the terminal or the keyboard),

then an empty list is returned. If the input is a list defining a block structure,

then the size of the block is calculated based on the block structure.

The function blocktolist can be used to convert the read data into Logo data.

Function eof? could be used to check for the end of file. However, if the last

unread portion of the file is smaller than size, then eof? before the reading

will be false, readpack will still return an empty list, and just after that,

eof? will start returning true.

readinblock :block

Function or command. Reads from the current reading file as much data as to fill

in an existing block. If there are not enough data in the file or if the reading file

is the default input device (usually the terminal or the keyboard), then an empty

list is returned, otherwise the same block is returned.

Lhogho: The Real Logo Compiler User Documentation

 -59-

The main feature of readinblock is that it reuses a block as a buffer for read-

ing. The other function, readblock, creates a new block for each execution.

The next example shows a typical usage of readinblock (assuming it uses the

block buf as a buffer):

make "buf readblock :buf

If the result of the reading (success or failure) is not needed, then readinblock

can be used as a command:

readblock :buf

writeblock :block DE: schreibepackung

Command. Writes the data from a memory block to the current writing file,

which must be opened for writing, updating or appending. If the writing file is

the default output device (usually the terminal or the console) then nothing is

written.

The functions listtoblock and listintoblock can be used to convert

Logo data into a memory block.

The following example creates a binary file of 6 bytes and then reads them back:

make "def [u1 u1 u1 u1 u1 u1]

make "file openfile "packopen.dat "wb

setwrite "packopen.dat

writepack listtoblock [1 2 3 4 5 -1] :def

closefile "packopen.dat

make "file openfile "packopen.dat "rb

setread "packopen.dat

make "data blocktolist readblock :def :def

closefile "packopen.dat

print :data

1 2 3 4 5 255

6. Variables

make :varname :value DE: setze

Command. Sets the value of variable called varname. If the variable does not

exist, then it is created as a global one.

make "a 10

Lhogho: The Real Logo Compiler User Documentation

 60

make "c :a+count [some text]

print :c

12

name :value :varname

Command. Sets the value of variable called varname. If the variable does not

exist, then it is created as a global one. The name command is the same as make

except that its inputs are in reversed order.

name 10 "a

name :a+count [some text]

print :c

12

local :varname DE: lokal
(local :varname :varname :varname …)

Command. Create local variables with given names. The variables are local to

the currently running procedure. The initial value of the variables is set to the

empty list [].

make "a 10

to test

 local "a

 make "a 20

 print :a

end

print :a

10

test

20

print :a

10

thing :name DE: wert

Function. Outputs the value of the variable whose name is the input name. If

there is more than one such variable, the innermost local variable of that name is

chosen.

make "a [One mouse]

print thing "a

Lhogho: The Real Logo Compiler User Documentation

 -61-

One mouse

defined? :name DE: def?
definedp :name DE: defp

Function. If the value of name is a name of a user-defined function or command

(but not a variable), then outputs true. Otherwise outputs false.

make "a 10

to test

end

print defined? "a

false

print defined? "test

true

define :name :text DE: definiere, def

Command. Defines or redefines a procedure with given name and text. The

text input must be a list whose elements are lists. The first element is a list of

inputs [[left-inputs] right-inputs]. The remaining elements make up

the body of the procedure.

The command define can define prefix, infix and suffix procedures. This is

controlled by how formal inputs are described.

A prefix procedure can be defined in these ways:

to mux :a :b

end

define "mux [[a b] ...]

define "mux [[[] a b] ...]

An infix procedure can be defined in these ways:

to :a mux :b

end

define "mux [[[a] b] ...]

A suffix procedure can be defined in these ways

to :a :b mux

end

define "mux [[[a b]] ...]

Lhogho: The Real Logo Compiler User Documentation

 62

There are two ways to execute a procedure which is defined at run-time. Note

that Lhogho is a compiler, so it should process the call after the called procedure

is defined. To implement this, execution can be delayed with the run command.

In the next example the print statement is processed at run-time after mux is

already defined and compiled.

define "mux [[x y] [output :x+:y]]

run [print mux 1 2]

3

The other alternative is to provide an empty prototype of the procedure.

to mux :x :y

end

define "mux [[x y] [output :x+:y]]

print mux 1 2

3

procedure? :name DE: prozedur?
procedurep :name DE: prozedurp

Function. If the value of name is a name of a function or command (but not a

variable), then outputs true. Otherwise outputs false.

make "a 1

to test

end

print procedure? "a

print procedure? "test

print procedure? "make

false

true

true

primitive? :name DE: grundwort?
primitivep :name DE: grundwortp

Function. If the value of name is a name of a primitive function or command

(but not a variable), then outputs true. Otherwise outputs false.

to test

end

print primitive? "test

print primitive? "make

Lhogho: The Real Logo Compiler User Documentation

 -63-

false

true

name? :name
namep :name

Function. If the value of name is a name of a variable, then outputs true. Oth-

erwise outputs false.

make "a 1

print name? "a

true

print name? "make

false

7. Advanced primitives

(a) Lhogho System variables

:logoplatform DE: logoplattform

Variable. This variable contains a word describing the platform. Currently it is

either Windows or Linux.

print :logoplatform

Windows

:logoversion

Variable. This variable contains a number describing the Logo major and minor

version – i.e the first two numbers from the full version number.

print :logoversion

0.0

:logodialect DE: logodialekt

Variable. This variable contains a word describing the Logo dialect. Currently it

is Lhogho.

print :logodialect

Lhogho

Lhogho: The Real Logo Compiler User Documentation

 64

:printdepthlimit DE: druckelistentiefe

Variable. A variable called printdepthlimit indicates how many levels of

list nesting to print. If the variable is a non-negative integer value, the list will be

printed only to the allowed depth.

make "a [a [b [c d] e [f g] h] i [j]]

make "printdepthlimit 2

print :a

a [b ... e ... h] i [j]

make "printdepthlimit 0

print :a

...

It is possible to create a local printdepthlimit and it will be used instead of

the global system-defined one.

:printwidthlimit DE: druckelistenmächtigkeit

Variable printwidthlimit affects how many elements form the beginning of

list or a word to print. If the variable is a non-negative integer value, only the

first printwidthlimit elements will be printed. All the rest will be replaced

by a single elipses. For words values between 0 and 9 (inclusive) are treated as

if printwidthlimit is 10.

make "printwidthlimit 2

print [a [b [c d] e [f g] h] i [j]]

a [b [c d] ...] ...

print "abcdefghijklmnopqrstuvwxyz

abcdefghij...

It is possible to create a local printwidthlimit and it will be used instead of

the global system-defined one.

:fullprintp DE: vollelistentiefep

Variable. If a variable called fullprintp is true then words are printed with

vertical bars and backslashed in a way to allow Lhogho to reread and reparse

them. Words printed under the effect of fullprintp does not necessarily have

the same characters as in the original source.

make "a [spaced\ word |barred word| |barred \| bar|]

print :a

spaced word barred word barred | bar

make "fullprintp "true

Lhogho: The Real Logo Compiler User Documentation

 -65-

print :a

|spaced word| |barred word| |barred \| bar|

If funnprintp is true then the empty word is printed as ||.

It is possible to create a local fullprintp and it will be used instead of the

global system-defined one.

:caseignorep DE: großkleinschrift.ignoriertp

Variable. If a variable called caseignoredp is true or is not defined, then

words are compared case insensitively (ABC equals Abc). If the variable is

false, then words are compared case sensitively (ABC differs from Abc).

The caseignoredp variable affects equalp, equal?, =, notequalp, note-

qual?, <>, memberp, member?, and member.

print "ABC = "abc

true

make "caseignoredp "false

print "ABC = "abc

false

It is possible to create a local caseignoredp and it will be used instead of the

global system-defined one.

(b) Run-time functions and commands

text :name

Function. Outputs a list containing the definition of a user-defined function or

command with given name. The first element of the list is a list of the inputs'

names. The other elements represent individual lines from the body of the func-

tion.

to proc :a :b :c

 print 1

 print 2 print 3

 print 4

end

print text "proc

[a b c] [print 1] [print 2 print 3] [print 4]

Lhogho: The Real Logo Compiler User Documentation

 66

If the user-defined function is infix or postfix, then the names of the left inputs

are grouped in a sublist within the first element of the result – i.e. just before the

first right input.

to :a proc1 :b :c

end

to :a :b proc2 :c

end

to :a :b :c proc3

end

print text "proc1

[[a] b c] [print 1]

print text "proc2

[[a b] c] [print 2]

print text "proc3

[[a b c]] [print 3]

The result of text is accepted as an input of define.

fulltext :name DE: volltext

Function. Outputs a word containing the definition of a user-defined function or

command with given name. The result includes the definition from to to end

inclusive. Spacing, formatting, continuation characters etc. are preserved. Dy-

namically created function for which there is no source, produce the same result

with fulltext as with text.

to myfunc :a ;test function

 print :a

 (print :a ~

 :a*:a)

end

print fulltext "myfunc

to myfunc :a ;test function

 print :a

 (print :a ~

 :a*:a)

end

The result of fulltext can not be accepted as an input of define.

Lhogho: The Real Logo Compiler User Documentation

 -67-

(c) Parsers

parse :value DE: parsatz

Function. Parses value as if it contains Logo data. The value can be a word or a

list. If it is a list, then each element is parsed individually.

print parse [print 1+count "boza]

print 1+count "boza

print parse [1+?37 1-555]

1+?37 1-555

runparse :value DE: tueparsatz

Function. Parses value as if it contains Logo commands. The value can be a

word or a list. If it is a list, then each element is parsed individually. Nested sub-

list are not parsed as commands, but as data.

print runparse [print 1+count "boza]

print 1 + count "boza

print runparse [1+?37 1-555]

1 + (? 37) 1 - 555

(d) Error handling

 throw :tag DE: wirf
(throw :tag :value)

Command. This command is used to generate a special event (called exception).

Exceptions cause the program to terminate unless they are captured and pro-

cessed by a catch command with the same tag. The throw command has 6

variants depending on the number of inputs and the contents of the tags.

 throw "toplevel DE: wirf "ausstieg
(throw "toplevel :value)

The tag toplevel forces the program to terminate and to return to the top level

– if a GUI is running the top level is the GUI itself; if a console version of

Lhogho is used, then top level is the command prompt.

 throw "system DE: wirf "system
(throw "system :value)

To exit the running program and the GUI the tag system can be used.

print "before

throw "system

Lhogho: The Real Logo Compiler User Documentation

 68

print "after

before

throw "error DE: wirf "fehler
(throw "error :value)

The tag error causes throw to generate a user-defined error exception. Using

tag error without a second input cases the error to be reported at the tag. If a

second input is present then it is used as an error message. In this case the error

is reported at the command in which throw is used.

to diff :x :y

 if not number? :x [(throw "error [Not a number])]

 if not number? :y [(throw "error [Not a number])]

 output :x-:y

end

print diff 5 pi

print diff 10 "pi

1.85840734641021

{ERR#30@217} - Not a number

print diff 10 "pi

 ^

If the tag is another word, then it is expected that the exception will be captured

by catch with the same tag. If a second input is not provided then catch

does not output any value too. If a second input is present, then it is the value

output by the catch with the same tag.

to reciprocal :x

 if not number? :x [(throw "oops 0)]

 output 1/:x

end

print catch "oops [reciprocal 5]

0.2

print catch "oops [reciprocal "five]

0

catch :tag :commands DE: fange

Command and function. This command is used to catch exceptions generates in

the commands during their execution. Catching is successful only if the tag of

Lhogho: The Real Logo Compiler User Documentation

 -69-

catch and throw are the same, or if the tag of catch is error and the excep-

tion in commands is caused by an error.

catch can be a command and a function. The result of catch is the value pro-

vided as a second input to the corresponding throw. However, the second input

to error thows are used as error messages, not as outputs of catch.

Only run-time errors related to the execution of user-program can be captured.

Errors related to source parsing, for example, could not be captures because they

are triggered before corresponding catch is activated.

catch "error

[

 print 1/5

 print 1/"five

]

0.2

error DE: fehler

Function. The function error is used to get information about the last captured

error with catch. If there was no any captured error, then the result is an empty

list. Otherwise it is a list with four elements:

 code – an integer number identifying the type of the error;

 message – a word containing the error message as text;

 procedure – a word containing the name of the user-defined procedure

where the error has occurred. If the error happened at top level, this element is

an empty list;

 source – a list containing the statement where the error has occurred. The

statement is represented in a prefinx notation, fully parenthesized.

The last captured error is forgotten after using error.

to test :n

 print 1/:n

end

catch "error [test "two]

make "err error

(print [Error code:] item 1 :err)

Error code: 13

(print [Error text:] item 2 :err)

Error text: Not a number

Lhogho: The Real Logo Compiler User Documentation

 70

(print [Error place:] item 3 :err)

Error place: test

(print [Error statement:] item 4 :err)

Error statement: (test "two)

(e) OS-related functions

This section describes functions which support the communication between

Logo programs and the operating system.

commandline DE: kommandozeile

Function. Returns a list of all command-line parameters which are not processed

by Lhogho itself. These parameters are the one after the name of the Logo pro-

gram being executed. For example, the command line for:

D:\lhogho\>lhogho –Zm primes.lgo 50

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

{MEM#0}

is the list [50], while –Zm and primes.lgo are processed by Lhogho and are

not available to the user program. The same command line is for this case of

running compiled primes:

D:\lhogho\>lhogho -x primes.lgo

D:\lhogho\>primes 50

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

getenv :name DE: gibumgebungsvariable

Function. Returns the value of an environment variable with given name. An

empty word is returned in the name does not exist.

type "USER=

print getenv "USER

USER=Lhogho

getenvs DE: gibumgebungsvariablen

Function. Returns a list with the names and the values of all environment varia-

bles. Each name and value are grouped: [[name1 value1] [name2 val-

ue2] …]. To get the value of a single variable it is faster to use getenv. The

next example prints the names and the values of 5 environment variables.

make "a getenvs

repeat 5

Lhogho: The Real Logo Compiler User Documentation

 -71-

[

 (type first first :a "= char 9)

 print last first :a

 make "a bf :a

]

WINDIR= C:\WINDOWS

USER= Lhogho

TERM= cygwin

PROMPT= PG

MAKE_MODE= unix

8. Low-level access

This section describes function and commands used to access external functions

and to deal with data stored in computer's memory.

IMPORTANT NOTE! THESE FUNCTIONS ARE SENSITIVE. THEY

DEAL WITH CODE AND DATA, WHICH ARE BEYOND LHOGHO’S

CONTROL. IF MISUSED THEY MAY CAUSE SYSTEM INSTABILITY

AND CRASH.

(a) Native data types

Native data types express data in an efficient processor-friendly manner. Exam-

ples for native types are bytes and pointers. Logo data (numbers, words, lists)

are not native types.

Lhogho uses native data types for various purposes:

 To communicate with modules written in another programming language,

so that Lhogho can use their functions, and they can use Lhogho functions.

 To read and write data to binary files. These data could be structured (e.g.

a file of 128-bytes records of patients) or unstructured (e.g. a sequence of

bytes).

 To convert Logo data to binary data and vice versa.

Native types supported by Lhogho are named by a character indicating the

group and a number indicating the size of the type.

The following table lists the native types.

Lhogho: The Real Logo Compiler User Documentation

 72

Type Size
(in bytes)

Explanation Externals Blocks

I1 1

Signed integer number Yes Yes
I2 2

I4 4

I8 8

U1 1

Unsigned integer number Yes Yes
U2 2

U4 4

U8 8

F4 4
Floating point number Yes Yes

F8 8

S1 4 Pointer to string of 1-byte characters
Yes No

S2 4 Pointer to string of 2-byte characters

P4 4 Pointer Yes Yes

A4 4 Atom (the internal Lhogho datum) No Yes

V0 4 Void Yes No

Note that not all native types are available for all functions that use them. For

example, prototypes of external functions cannot use A4 format, while block

functions cannot use S1, S2 and V0 formats.

In many cases communication with native data types uses larger structures that

are composed of several and usually different native types.

Lhogho represents the definition of such structures (called block definitions) as

list of native types. The next example shows a block definition of a 3D point

with integer coordinates:

[i4 i4 i4]

It is possible to put block definitions inside other block definitions. Thus, a seg-

ment defined by two points could be expressed as:

[[i4 i4 i4] [i4 i4 i4]]

When an element in a block definition is repeated many times it is possible to

use multipliers. A multiplier is a number that determines how many times to re-

peat the next element in the definition. Instead of writing:

[i2 i2 i2 i2 i2 i2 i2 i2 i2 i2]

it is possible to write:

[10 i2]

Similarly, segment definition above could be written as:

[[3 i4] [3 i4]]

or even:

Lhogho: The Real Logo Compiler User Documentation

 -73-

[2 [3 i4]]

For convenience it is possible to give custom names of native types and block

definitions and then use these names in other block definitions. The following

example defines byte and int as alternative names for u1 and i4.

make "byte "u1

make "int "i4

Thus point and segment could be also defined as:

make "point [int int int]

make "segment [point point]

(b) Blocks

A block is a continuous area in the memory filled with binary data. Neither

Lhogho or any other program or even the processor can tell what actually the

meaning of these data is. When a block is paired to a block definition then

Lhogho has a means to interpret the contents of the block as a collection of na-

tive data types. In this respect blocks provide a similar functionality as struct

in C and record in Pascal.

The functions described in this section are used to manage memory blocks con-

taining binary data (i.e. a sequence of bytes). Reading and writing blocks from

binary files is described in page 58.

blocksize :block DE: packgröße

blocksize :blockdef

Function. Outputs the size of an actual block or a block definition blockdef.

print blocksize [i1 i2 f4]

7

print blocksize [i1 i2 [i1 i8] [u1 [u4 f4]]]

21

listtoblock :list :blockdef DE: packen

Function. Converts the elements of a list according to the given block defini-

tion blockdef and returns a memory block containing the elements converted

to native format. This corresponds (roughly!) to converting Logo data into a C

structure. Data in a memory block can be converted back to Logo list with

blocktolist function.

make "Byte "u1

make "Float "f4

Lhogho: The Real Logo Compiler User Documentation

 74

make "struct listtoblock [1 [2 2.5]] [Byte [Float

Float]]

print blocktolist :struct [Byte [Float Float]]

1 [2 2.5]

If input data are less than the required by blockdef all empty slots in the

memory block are set to 0.

make "a listtoblock [10 [5]] [u2 [u2 u2 u2] u2 u2]

print blocktolist :a [u2 [u2 u2 u2] u2 u2]

10 [5 0 0] 0 0

listintoblock :data :block :blockdef DE: packenzu
listintoblock :data :address :blockdef

Command. Converts data according to the given block definition blockdef

into destination block or address. The second input should be either a block

or an integer number for a memory address. Converting to destination requires

that there is enough space for all data. Otherwise extra data may overwrite es-

sential data and make the whole system unstable.

make "pair [[i1 i1] [i1 i1]]

make "a listtoblock [[1 2] [3 4]] :pair

print blocktolist :a :pair

[1 2] [3 4]

listintoblock [[11 12] [13 14]] :a :pair

print blocktolist :a :pair

[11 12] [13 14]

blocktolist :block :blockdef DE: entpacken
blocktolist :address :blockdef

Function. Converts into a list data stored in block or at given memory ad-

dress according to blockdef.

make "Byte "u1

make "Float "f4

make "struct listtoblock [1 [2 2.5]] [Byte [Float

Float]]

print blocktolist :struct [Byte [Float Float]]

1 [2 2.5]

Lhogho: The Real Logo Compiler User Documentation

 -75-

Together with dataaddr this function can be used to peek the raw structure of

Logo data. The following example prints the reference count of a Logo datum.

This count is unsigned 32-bit integer stored at the beginning of each Logo datum.

make "a [one two]

make "b blocktolist dataaddr :a [u4]

(print [Reference count] first :b)

Reference count 3

The tandem listtoblock and blocktolist can be used to split and join in-

teger numbers. The next example demonstrates the values of the four bytes in a

32-bit integer.

make "a listtoblock [1000] [i4]

print blocktolist :a [u1 u1 u1 u1]

232 3 0 0

(c) Shared libraries

This section describes functions that can be used to manage functional commu-

nication between Lhogho and external non-Lhogho compiled functions in shared

or dynamic libraries.

libload :libname DE: bibliothekladen

Command. Loads dynamic/shared library with file name given by libname. If

the name is without extension then the default extension for the current operat-

ing system will be used (*.DLL for Windows and *.SO for Linux). If the name

contains a path, then the library is searched in this path. Otherwise the library is

searched in the default for the operating system places. If the file is not found,

then it is searched in the lib subfolder of the folder where the compiler is locat-

ed. The returned value is an OS-dependent handle (i.e. a number) which identi-

fies the loaded library.

make "handle libload "testlib

if :handle = 0

 [print [TestLib not loaded]]

 [print [TestLib loaded]]

TestLib loaded

libfree :handle DE: bibliothekfrei

Command. Unloads dynamic/shared library. The input should be the handle re-

turned by libload when the library has been loaded for the first time.

Lhogho: The Real Logo Compiler User Documentation

 76

make "handle libload "testlib

libfree :handle

external :name :prototype :handle DE: extern

Command. Defines that function called name corresponds to an external func-

tion with given prototype and its binary code is in a library corresponding to

handle. The prototype is a list in this format: [result extname param1

param2 …] where result is the type name of the result (it could be native or

user-defined), extname is the name of the external function the way it is ex-

ported by the library. The rest elements param1, param2, etc are the type

names of the parameters.

In the example, the Lhogho definition of byteadd creates an empty function,

which is bound to addup function from testlib.so or testlib.dll. The

external function (that might have been compiled in C) uses two parameters,

which are unsigned bytes, and produces a result, which is also an unsigned byte.

make "handle libload "testlib

to byteadd :a :b

end

external "byteadd [u1 addub u1 u1] :handle

print byteadd 100 100

200

libfree :handle

The external command helps Lhogho to use external functions. During the

execution, Lhogho does the following steps:

 It converts inputs, which are in Logo data format, into native format

 It calls the external function providing the native data

 If receives the result of the function (a native datum)

 Converts the result into a Logo datum.

internal :name :prototype DE: intern

Command. Defines that function called name is a Logo function which will be

called by an external function written in another language. The prototype de-

fines the native data type of the result and the inputs of the Logo function: [re-

sult param1 param2 …] where result is the type name of the result (it

could be native or user-defined), param1, param2, etc are the type names of the

parameters.

Lhogho: The Real Logo Compiler User Documentation

 -77-

The internal command helps Lhogho to define a function that is called by

non-Lhogho functions (e.g. callbacks). During the execution, Lhogho does the

following steps:

 It converts inputs, which are in native data format, into Logo format

 It calls the Lhogho function providing the Logo data

 If receives the result of the function (a Logo datum)

 Converts the result into a native datum and returns it to the calling function.

funcaddr :name DE: funktionadr

Function. Returns the address of the compiled body of function with a given

name. The result can be used in hook functions – i.e. functions from a shared li-

brary that calls a Lhogho function by its address.

In the following example the external function apply calls directly the com-

piled code of add or sub, which are defined completely as user functions.

if equal? :logoplatform "Windows

 [make "lib libload "testlib]

 [make "lib libload "./libtestlib.so]

to apply.func :func :arg1 :arg2

end

to add :x :y

 output :x+:y

end

to sub :x :y

 output :x-:y

end

external "apply.func [i4 apply p4 i4 i4] :lib

internal "add [i4 i4 i4]

internal "sub [i4 i4 i4]

print apply.func funcaddr "add 10 5

print apply.func funcaddr "sub 10 5

libfree :lib

dataaddr :thing DE: dataadr

Function. This function returns the address of memory block where the Logo da-

ta of thing is stored. The address of Logo data can be used to manage the in-

ternal representation of Logo data. However, this is dangerous as long as going

to invalid address or writing inappropriate data may lead to a system crash.

Lhogho: The Real Logo Compiler User Documentation

 78

The following example demonstrates that two variables with the same value do

not necessarily share the same memory.

make "a 45.8+1

make "b 44.8+2

make "c :a

(print equal? dataaddr :a dataaddr :b)

false

(print equal? dataaddr :a dataaddr :c)

true

(d) System stack

_int3

Command. Generates a software interrupt. This command is useful only when

Lhogho is being debugged with an external debugger, which understands soft-

ware interrupts. Using _int3 without debugger will cause the program to ter-

minate with an exception.

_stackframe :frame :offset DE: _stackrahmen

Function. Returns an integer number, which is found at an offset of a stack

frame. Frame 0 is the stack frame of the currently executing procedure (the one,

which uses _stackframe). Each procedure has two parent procedures (which

could be different or the same) – a static parent and a dynamic parent. The stat-

ic parent is the parent procedure that has the current procedure defined as a local

procedure. The static parent of a procedure can never change once a Logo pro-

gram is compiled. The dynamic parent is the procedure that called the current

procedure. During the lifetime of a procedure it may have different dynamic

parents (depending on which other procedures use it).

If frame is greater than 0 it denotes a static parent, 1 means the static parent, 2

means the static parent of the static parent and so on.

If frame is negative it denotes a dynamic parent, -1 means the dynamic parent, -

2 means the dynamic parent of the dynamic parent and so on.

For portability offset is always measured in terms of the processor-specific

data size, which is large enough to hold a memory address. Thus, offset is not

measured in bytes.

The function _stackframe can be used to get the number of actual inputs of a

procedure.

Lhogho: The Real Logo Compiler User Documentation

 -79-

to inputs

 output _stackframe -1 2

end

to test :a :b ...

 print inputs

end

test 1 2

2

(test 1 2 3 4 5 6)

6

_stackframeatom :frame :offset DE: _stackrahmenatom

Function. This function is the same as _stackframe, except that it assumes the

extracted value from the offset in the given stack frame is a Lhogho datum –

number, word or list. Use _stackframeatom to get only data which is guaran-

teed to be Lhogho data; otherwise the user program may stop working.

The next example retrieves the values of all actual inputs of a user-defined

command. Note that the physical order of the inputs places inputs in reversed

order and named inputs are positioned before the others.

to inputs

 output _stackframe -1 2

end

to input :n

 output _stackframeatom -1 2+:n

end

to test :a :b ...

 repeat inputs [type input repcount]

 (print)

end

test 1 2

21

Lhogho: The Real Logo Compiler User Documentation

 80

(test 1 2 3 4 5 6)

216543

Lhogho: The Real Logo Compiler User Documentation

 -81-

Chapter IV. Libraries

1. TGA

The TGA library can be used to create TGA (Targa) image files. Only the most

basic and simpliest file format is supported, i.e. the 24-bit uncompressed RGB

format. For more information about TGA format check:

http://www.fileformat.info/format/tga/egff.htm

tgaopen :filename :width :height DE: tgaöffnen

Command. This command creates a new TGA image file called filename and

defines its header. The size of the image is set to width and height pixels.

tgawrite :filename :red :green :blue DE: tgaschreiben

Command. This command writes a pixel color information to a TGA file created

with tgaopen. The color is defined by three numbers (from 0 to 255) corre-

sponding to the red, green and blue components of a color in RGB colorspace.

The writer file is automatically set to the filename.

tgaclose :filename DE: tgaschließen

Command. This command closes a TGA file. Closing should be done only when

the exact number of pixels is being written to the file with tgawrite. The

number of pixels is the product of the width and the height of the image, as

defined when tgaopen has been called. For example, if the image is 200x70

pixels, the number of pixels is 14,000.

load "tga.lgo

tgaopen "image.tga 128 128

for "x [0 127]

[for "y [0 127]

 [

 make "r round 128+127*sin 10*:x

 make "g round 128+127*cos 10*:y

 make "b round 128+127*sin :x+:y

 tgawrite "image.tga :r :g :b

]

]

tgaclose "image.tga

http://www.fileformat.info/format/tga/egff.htm

Lhogho: The Real Logo Compiler User Documentation

 82

Figure 1 Using TGA library

2. GL

The GL library provides an interface to OpenGL. The binary file

(OPENGL32.DLL for Windows or libGL.so for Linux) is not a part of Lhogho

and should be available before using GL.

This section provides a list of supported functions. For a complete documenta-

tion about each of them consult OpenGL’s documentation.

For an example of how to use GL check the Cube3d application.

(a) Matrix transformations

Most of the geometrical operations done by OpenGL are performed by matrices.

The functions in this section are used to change these matrices.

glLoadIdentity

Command. Replaces the current matrix with the identity matrix.

glTranslatef :x :y :z

Command. Multiplies the current matrix by a translation matrix.

glScalef :sx :sy :sz

Command. Multiplies the current matrix by a general scaling matrix.

glRotatef :angle :x :y :z

Command. Multiplies the current matrix by a rotation matrix.

glOrtho :left :rigth :bottom :top :near :far

Command. Multiplies the current matrix by an orthographic matrix.

Lhogho: The Real Logo Compiler User Documentation

 -83-

glMatrixMode :mode

Command. Specifies which matrix is the current matrix. The value of mode is

one of these constants:

GL_MODELVIEW Applies subsequent matrix operations to the modelview matrix

stack.

GL_PROJECTION Applies subsequent matrix operations to the projection

matrix stack.

(b) Display lists

Display lists are used to collect a list of OpenGL commands which can be exe-

cuted multiple times like a subroutine.

glNewList :list :mode

Command. Starts the definition of a display list. The value of mode is one of

these constants:

GL_COMPILE Commands are merely compiled.

GL_COMPILE_AND_EXECUTE Commands are executed as they are compiled

into the display list.

glEndList

Command. Finishes the definition of a display list.

glCallList :list

Command. Executes a display list.

(c) Graphical primitives

glBegin :mode

Command. Starts a definition of a group of graphical primitives. The value of

mode is one of these constants:

GL_POINTS Each vertex as a single point.

GL_QUADS Each group of four vertices as an independent quadrilateral.

glEnd

Command. Ends a definition of a group of graphical primitives.

glVertex3f :x :y :z

Command. Specifies a vertex.

Lhogho: The Real Logo Compiler User Documentation

 84

glRectf :x1 :y1 :x2 :y2

Command. Draw a rectangle.

(d) Properties of graphical primitives

glNormalf :sx :sy :sz

Command. Sets the current normal vector.

glColor3f :r :g :b

Command. Sets the current color.

glPointSize :size

Command. Specifies the diameter of rasterized points.

(e) Buffers

OpenGL uses buffers to represent the rasterized image. The following function

manage buffers.

glClearColor :r :g :b :a

Command. Specifies clear values for the color buffers.

glDrawBuffer :buffer

Command. Specifies which color buffers are to be drawn into. The value of

buffer is one of these constants:

GL_BACK Only the back-left and back-right color buffers are written. If

there is no back-right color buffer, only the back-left color buffer is written.

glClear :buffer

Command. Clears buffers to preset values. The value of buffer is one or a

combination of these constants:

GL_COLOR_BUFFER_BIT Clears the buffers currently enabled for color

writing.

GL_DEPTH_BUFFER_BIT Clears the depth buffer.

(f) Miscellaneous

glGetError

Function. Returns OpenGL error information.

Lhogho: The Real Logo Compiler User Documentation

 -85-

glEnable :mode

Command. Enables OpenGL capabilities. The value of mode is one of these

constants:

GL_DEPTH_TEST If enabled, do depth comparisons and update the depth

buffer.

glViewport :x :y :w :h

Command. Sets the viewport.

glFlush

Command. Forces execution of OpenGL functions in finite time.

3. GLU

The GLU library provides an interface to the OpenGL Utility Library GLU. The

binary file (GLU32.DLL for Windows or libGLU.so for Linux) is not a part of

Lhogho and should be available before using GL.

This section provides a list of supported functions. For a complete documenta-

tion about each of them consult their documentation.

For an example of how to use GLU, check the Cube3d application.

gluLookAt :eyeX :eyeY :eyeZ :cX :cY :cZ :upX :upY :upZ

Command. Creates a viewing matrix derived from an eye point, a reference

point indicating the center c of the scene, and an up vector.

gluPerspective :fovy :aspect :zNear :zFar

Command. Sets up a perspective projection matrix.

4. GLUT

The GLUТ library provides an interface to the OpenGL Utility Toolkit GLUТ.

The original GLUT is not updated for quite some time, so Lhogho uses an open-

source alternative called FreeGLUT. The binary file (FREEGLUT.DLL for Win-

dows or libglut.so for Linux) is not a part of Lhogho and should be availa-

ble before using GL. For convenience, FREEGLUT.DLL is distributed with the

Windows package of Lhogho.

This section provides a list of supported functions. For a complete documenta-

tion about each of them consult their documentation.

Lhogho: The Real Logo Compiler User Documentation

 86

For an example of how to use GLU, check the Cube3d application. For an alter-

native of GLUT see GLFW.

(a) Window initialization

GLUT provides interfaces to several functions for window creation, initializa-

tion and modification.

glutInit :argc :argv

Command. Initializes the GLUT library.

glutFullScreen

Command. Requests that the current window be made full screen.

glutCreateWindow :caption

Function. Creates a top-level window with a given caption. Returns a handle

to the new window.

glutCreateSubWindow :window :x :y :width :height

Function. Creates a subwindow. Returns a handle to the new subwindow.

glutInitDisplayMode :mode

Command. Sets the initial display mode, which is a combination of these con-

stants:

GLUT_DOUBLE Bit mask to select a double buffered window.

GLUT_RGB Bit mask to select an RGBA mode window.

GLUT_DEPTH Bit mask to select a window with a depth buffer.

glutReshapeWindow :x :y

Command. Requests a change to the size of the current window.

glutSetWindow :window

Command. Sets the current window identified by its window handle, which was

returned by glutCreateWindow or glutCreateSubWindow.

glutSetCursor :cursor

Command. Changes the cursor image of the current window.

Lhogho: The Real Logo Compiler User Documentation

 -87-

(b) Main loop

GLUT has a specific main loop that captures events and allows the user program

to react on them. The following functions are used to manage the main loop.

glutMainLoop

Command. Enters the FreeGLUT event processing loop.

glutLeaveMainLoop

Command. Causes FreeGLUT to stop the event loop.

glutPostRedisplay

Command. Marks the current window as needing to be redisplayed.

glutSwapBuffers

Command. Swaps the front and the back buffers of the current window.

(c) Events

FreeGLUT supports callbacks to respond to events, like reshaping a window and

keyboard input.

glutHook :type :func

Command. This command is not a part of GLUT or FreeGLUT. It defines that

function with name the value of func is responsible to a callback link. I.e. the

FreeGLUT library will call the hooked Lhogho user-defined command to handle

specific events.

glHook is practically equivalent to defining that func is internal and then regis-

tering it with the appropriate callback function from FreeGLUT. The hook func-

tion is determined by type, which can be any of the words idle, special,

keyboard, display, and reshape.

The following code:

to kbd :key :x :y

 if equal? :key 27 [glutLeaveMainLoop]

end

internal "kbd [v0 i1 i4 i4]

glutKeyboardFunc funcaddr "kbd

is equivalent to:

to kbd :key :x :y

 if equal? :key 27 [glutLeaveMainLoop]

Lhogho: The Real Logo Compiler User Documentation

 88

end

glHook "keyboard "kbd

Note that glHook must be called only if func is a user-defined command that is

not internalized with the internal command. If you need to hook an internal

function, then use directly the corresponding functions listed below:

glutDisplayFunc :func

Command. Sets the display callback function for the current window. This func-

tion should be declared like this:

to displayFunc

end

glutIdleFunc :func

Command. Sets the global idle callback function. This function should be de-

clared like this:

to idleFunc

end

glutKeyboardFunc :func

Command. Sets the keyboard callback function for the current window. This

function should be declared like this:

to keyboardFunc :key :x :y

end

glutSpecialFunc :func

Command. Sets the special keyboard callback function for the current window.

This function should be declared like this:

to specialFunc :key :x :y

end

glutMotionFunc :func

Command. Sets the motion callback function respectively for the current win-

dow. This function should be declared like this:

to motionFunc :x :y

end

glutMouseFunc :func

Command. Sets the mouse callback function for the current window. This func-

tion should be declared like this:

Lhogho: The Real Logo Compiler User Documentation

 -89-

to mouseFunc :button :state :x :y

end

glutReshapeFunc :func

Command. Sets the reshape callback function for the current window. This func-

tion should be declared like this:

to reshapeFunc :w :h

end

5. GLFW

The GLFW library provides an interface to the OpenGL Framework GLFW

(http://www.glfw.org/). The binary file (glfw.dll for Windows) is not a

part of Lhogho and should be available before using GL. For convenience,

glfw.dll is distributed with the Windows package of Lhogho. If the binary

file cannot be located or loaded, the library will generate the custom error mes-

sage: Error loading GLFW.

This section provides a list of supported functions. For a complete documenta-

tion about each of them consult their documentation.

For an example of how to use GLFW, check the Cube3d application. For an al-

ternative of GLFW see GLUT.

(a) Initialization

GLFW provides interfaces to functions initialization, termination and version

querying

glfwInit

Command. Initializes GLFW. No other GLFW functions may be called before this

function has succeeded. If the initialization fails, the function will generate the

custom error message: Error initializing GLFW.

glfwTerminate

Command. Terminates GLFW. If needed it closes the window and kills any run-

ning threads.

glfwGetVersion

Function. Returns a list of three numbers – the major version number, the minor

version number and the revision number.

print glfwGetVersion

Lhogho: The Real Logo Compiler User Documentation

 90

2 7 2

glfwGetGLVersion

Function. Returns a list of three numbers – the major version number, the minor

version number and the revision number of OpenGL.

print glfwGetGLVersion

2 7 2

glfwGetNumberOfProcessors

Function. Returns the number of processors in the system.

glfwEnable :feature

Command. Enables a certain feature of GLFW. The feature is one of these

values:

GLFW_AUTO_POLL_EVENTS

glfwPollEvents is automatically called immediately after glfwSwapBuff-

ers is called.

GLFW_KEY_REPEAT

The key and character callback functions are called repeatedly when a key is

held down long enough.

GLFW_MOUSE_CURSOR

The mouse cursor is visible and the mouse coordinates are limited to the interior

area of the window.

GLFW_STICKY_KEYS

Keys which are pressed will not be released until they are physically released

and checked with glfwGetKey.

GLFW_STICKY_MOUSE_BUTTONS

Mouse buttons that are pressed will not be released until they are physically re-

leased and checked with glfwGetMouseButton.

GLFW_SYSTEM_KEYS

Pressing standard system key combinations, such as Alt+Tab under Windows,

will give the normal behavior.

glfwDisable :feature

Command. Disables a certain feature of GLFW. The feature is one of these

values:

Lhogho: The Real Logo Compiler User Documentation

 -91-

GLFW_AUTO_POLL_EVENTS

glfwPollEvents is not called automatically after glfwSwapBuffers is

called.

GLFW_KEY_REPEAT

The callback functions are only called once when a key is pressed and once

when it is released.

GLFW_MOUSE_CURSOR

The mouse cursor is invisible, and mouse coordinates are not limited.

GLFW_STICKY_KEYS

The status of a key is always the current physical state of the key.

GLFW_STICKY_MOUSE_BUTTONS

Тhe status of a mouse button is always the current physical state of the mouse

button.

GLFW_SYSTEM_KEYS

Пressing standard system key combinations like Alt+Tab under Windows will

have no effect, since those key combinations are blocked by GLFW.

(b) Window handling

Functions for window handling are used to open and manage windows accepting

OpenGL commands.

glfwOpenWindow :width :height :color :alpha
 :depth :stencil :mode

Command. Opens a window that best matches the parameters given to the func-

tion: width and height in pixels, number of bits for each color, number of

bits for the alpha, depth and stencil buffers and mode which is one of these

constants:

GLFW_WINDOW generates a normal desktop window

GLFW_FULLSCREEN generates a window which covers the entire screen.

A typical example for opening a normal window of 600x300 pixels supporting

24-bit colours, and 16-bit depth buffer would be:

glfwOpenWindow 600 300 8 0 16 0 :GLFW_WINDOW

Note: The original GLFW’s glfwOpenWindow is a function (not a command)

and it has different number of inputs. For example, it has separate input for each

colour component (red, green and blue) If you need to use it; it is available un-

der the name _glfwOpenWindow.

Lhogho: The Real Logo Compiler User Documentation

 92

glfwOpenWindowHint :param :value

Command. Suggests a value of a param parameter of a GLFW window. A

value of 0 or GL_FALSE sets the default system-defined hint. The glfwOpen-

WindowHint command must be called before glfwOpenWindow. The parame-

ters (for complete details see the original GLFW Reference) are:

GLFW_REFRESH_RATE

GLFW_ACCUM_RED_BITS

GLFW_ACCUM_GREEN_BITS

GLFW_ACCUM_BLUE_BITS

GLFW_ACCUM_ALPHA_BITS

GLFW_AUX_BUFFERS

GLFW_STEREO

GLFW_WINDOW_NO_RESIZE

GLFW_FSAA_SAMPLES

GLFW_OPENGL_VERSION_MAJOR

GLFW_OPENGL_VERSION_MINOR

GLFW_OPENGL_FORWARD_COMPAT

GLFW_OPENGL_DEBUG_CONTEXT

GLFW_OPENGL_PROFILE

glfwCloseWindow

Command. Closes the opened window and destroys the associated OpenGL con-

text.

glfwSetWindowTitle :title

Command. Sets the title (caption text) of a window.

glfwSetWindowSize :width :height

Command. Changes the size of an opened window. The width and height de-

fine the size of the interior area of the window (i.e. excluding any window bor-

ders).

glfwGetWindowSize :width :height

Function. Returns a list of the width and height of the interior area of an opened

window.

Lhogho: The Real Logo Compiler User Documentation

 -93-

glfwSetWindowPos :x :y

Command. Sets the horizontal position x and the vertical position y of the win-

dow, relative to the upper left corner of the desktop.

glfwIconifyWindow

Command. Minimizes an opened window to an icon.

glfwRestoreWindow

Command. Restores a minimized window.

glfwGetWindowParam :param

Function. Returns the value of a window parameter param which is one of the

following (for complete details see the original GLFW Reference):

GLFW_OPENED

GLFW_ACTIVE

GLFW_ICONIFIED

GLFW_ACCELERATED

GLFW_RED_BITS

GLFW_GREEN_BITS

GLFW_BLUE_BITS

GLFW_ALPHA_BITS

GLFW_DEPTH_BITS

GLFW_STENCIL_BITS

GLFW_REFRESH_RATE

GLFW_ACCUM_RED_BITS

GLFW_ACCUM_GREEN_BITS

GLFW_ACCUM_BLUE_BITS

GLFW_ACCUM_ALPHA_BITS

GLFW_AUX_BUFFERS

GLFW_STEREO

GLFW_WINDOW_NO_RESIZE

GLFW_FSAA_SAMPLES

GLFW_OPENGL_VERSION_MAJOR

Lhogho: The Real Logo Compiler User Documentation

 94

GLFW_OPENGL_VERSION_MINOR

GLFW_OPENGL_FORWARD_COMPAT

GLFW_OPENGL_DEBUG_CONTEXT

GLFW_OPENGL_PROFILE

glfwSwapBuffers

Command. Swaps the back and front color buffers of the window.

glfwPollEvents is called after swapping if GLFW_AUTO_POLL_EVENTS is

enabled (which is the default).

glfwSwapInterval :interval

Command. Selects the minimum number of monitor vertical retraces that should

occur between two buffer swaps. If the selected swap interval is one, the rate of

buffer swaps will never be higher than the vertical refresh rate of the monitor. If

the selected swap interval is zero, the rate of buffer swaps is only limited by the

speed of the software and the hardware.

(c) Video Modes

A video mode is a list of five number determining the raster and the colour reso-

lution [width height redbits greenbits bluebits]. The raster reso-

lution is the number of horizontal width and vertical height pixels. The col-

our resolution is the number of bits for each colour component.

glfwGetDesktopMode

Function. Returns the desktop video mode used by the desktop at the time the

GLFW window was opened, not the current video mode (which may differ from

the desktop video mode if the GLFW window is a fullscreen window).

The following example reports that the desktop screen is 1280x800 pixels and

supports 24-bit colours.

print glfwGetDesktopMode

1280 800 8 8 8

glfwGetVideoModes

Function. Returns a list of supported video modes in ascending order (sorted by

colour resolution and then by raster resolution). The last element of the list is the

mode with largest resolutions.

print glfwGetVideoModes

Lhogho: The Real Logo Compiler User Documentation

 -95-

[320 200 5 5 6] [320 240 5 5 6] [400 300 5 5 6]

[512 384 5 5 6] [640 400 5 5 6] [640 480 5 5 6]

[800 600 5 5 6] [1024 768 5 5 6] [1280 768 5 5 6]

[1280 800 5 5 6] [320 200 8 8 8] [320 240 8 8 8]

[400 300 8 8 8] [512 384 8 8 8] [640 400 8 8 8]

[640 480 8 8 8] [800 600 8 8 8] [1024 768 8 8 8]

[1280 768 8 8 8] [1280 800 8 8 8]

(d) Timing

GLFW supports internal high-precision timer – a floating-point number measur-

ing seconds and fractions of seconds.

glfwGetTime

Function. Returns the current GLFW time. Initially, glfwInit sets the timer to

0.

glfwSetTime :time

Command. Sets the current GLFW time.

glfwSleep :time

Command. Puts the calling thread to sleep for the requested period of time.

There is usually a system dependent minimum time for which it is possible to

sleep (generally in the range 1 ms to 20 ms).

(e) Input handling

glfwPollEvents

Command. Polls for events, such as user input and window resize events. Upon

calling this command, all window states, keyboard states and mouse states are

updated. If any related callback functions or commands are registered, they are

called. Events are implicitly polled during glfwSwapBuffers if

GLFW_AUTO_POLL_EVENTS is enabled (as it is by default).

glfwWaitEvents

Command. Waits for events and then polls them as glfwPollEvents.

glfwGetKey :key

Function. Queries the current state of a specific keyboard key. The function re-

turns :GLFW_PRESS if the key is held down, or :GLFW_RELEASE if the key is

not held down. The value of key can be either the ASCII code of an uppercase

Lhogho: The Real Logo Compiler User Documentation

 96

printable ISO 8859-1 (Latin 1) character (e.g. ’A’, ’3’ or ’.’), or a special key

identifier:

GLFW_KEY_SPACE Space

GLFW_KEY_ESC Escape

GLFW_KEY_Fn Function key n (n can be in the range 1..25)

GLFW_KEY_UP Cursor up

GLFW_KEY_DOWN Cursor down

GLFW_KEY_LEFT Cursor left

GLFW_KEY_RIGHT Cursor right

GLFW_KEY_LSHIFT Left shift key

GLFW_KEY_RSHIFT Right shift key

GLFW_KEY_LCTRL Left control key

GLFW_KEY_RCTRL Right control key

GLFW_KEY_LALT Left alternate function key

GLFW_KEY_RALT Right alternate function key

GLFW_KEY_LSUPER Left super key, WinKey, or command key

GLFW_KEY_RSUPER Right super key, WinKey, or command key

GLFW_KEY_TAB Tabulator

GLFW_KEY_ENTER Enter

GLFW_KEY_BACKSPACE Backspace

GLFW_KEY_INSERT Insert

GLFW_KEY_DEL Delete

GLFW_KEY_PAGEUP Page up

GLFW_KEY_PAGEDOWN Page down

GLFW_KEY_HOME Home

GLFW_KEY_END End

GLFW_KEY_KP_n Keypad numeric key n (n can be in the range 0..9)

GLFW_KEY_KP_DIVIDE Keypad divide (_)

GLFW_KEY_KP_MULTIPLY Keypad multiply (_)

GLFW_KEY_KP_SUBTRACT Keypad subtract (�)

Lhogho: The Real Logo Compiler User Documentation

 -97-

GLFW_KEY_KP_ADD Keypad add (+)

GLFW_KEY_KP_DECIMAL Keypad decimal (. or ,)

GLFW_KEY_KP_EQUAL Keypad equal (=)

GLFW_KEY_KP_ENTER Keypad enter

GLFW_KEY_KP_NUM_LOCK Keypad num lock

GLFW_KEY_CAPS_LOCK Caps lock

GLFW_KEY_SCROLL_LOCK Scroll lock

GLFW_KEY_PAUSE Pause key

GLFW_KEY_MENU Menu key

glfwGetMouseButton :button

Function. Queries the current state of a specific mouse button. The function re-

turns :GLFW_PRESS if the button is held down, or :GLFW_RELEASE if the but-

ton is not held down. The value of button can be:

GLFW_MOUSE_BUTTON_LEFT Left mouse button (button 1)

GLFW_MOUSE_BUTTON_RIGHT Right mouse button (button 2)

GLFW_MOUSE_BUTTON_MIDDLE Middle mouse button (button 3)

GLFW_MOUSE_BUTTON_n Mouse button n (n can be in the range 1..8)

glfwGetMousePos

Function. Returns the current mouse position as a list of two numbers. If the

cursor is not hidden, the mouse position is the cursor position, relative to the up-

per left corner of the window.

glfwSetMousePos :xpos :ypos

Command. Changes the position of the mouse. If the cursor is visible (not disa-

bled), the cursor will be moved to the specified position, relative to the upper

left corner of the window. If the cursor is hidden (disabled), only the mouse po-

sition that is reported by GLFW is changed.

glfwGetMouseWheel

Function. Returns the current mouse wheel position.

glfwSetMouseWheel :pos

Command. Changes the position of the mouse wheel.

Lhogho: The Real Logo Compiler User Documentation

 98

(f) Callback functions

Callback functions are used to provide user-functionality executed when a spe-

cial event occurs.

glfwSetCallback :glfwFunc :userFunc

Command. This command is a Lhogho extension to GLFW. It hooks a user

function or command given by its name userFunc to a dedicated GLFW func-

tion with name in glfwFunc. The values of glfwFunc are predetermined and

they could be:

glfwSetWindowClose

The user function with a name in userFunc will be called whenever a user re-

quests that the window should be closed, typically by clicking the window close

icon. The user function should have no inputs. The return value of the user func-

tion indicates whether or not the window close action should continue. If the re-

turned value is GL_TRUE, the window will be closed. If the returned value is

GL_FALSE, the window will not be closed.

glfwSetWindowSize

The user command with a name in userFunc will be called whenever the win-

dow size changes. The user command should have two inputs (width and

height).

glfwSetWindowRefresh

The user command with a name in userFunc will be called whenever there are

window refresh events, which occur when any part of the window client area

has been damaged, and needs to be repainted (for instance, if a part of the win-

dow that was previously occluded by another window has become visible). The

user command should have no inputs.

glfwSetKey

The user command with a name in userFunc will be called whenever a key is

pressed or released. The user command should have two inputs. The first one is

the key (for its values see glfwGetKey) and the second is the action, which

values are :GLFW_PRESS or :GLFW_RELEASE.

glfwSetChar

The user command with a name in userFunc will be called whenever a printa-

ble character is generated by the keyboard. The user command should have two

inputs. The first one is the character, which values are Unicode characters, and

the second is the action, which values are :GLFW_PRESS or :GLFW_RELEASE.

Lhogho: The Real Logo Compiler User Documentation

 -99-

glfwSetMouseButton

The user command with a name in userFunc will be called whenever a mouse

button is pressed or released. The user command should have two inputs. The

first one is the button (see glfwGetMouseButton for details) and the second is

the action, which values are :GLFW_PRESS or :GLFW_RELEASE.

glfwSetMousePos

The user command with a name in userFunc will be called whenever the

mouse is moved. The user command should have two inputs – the X and Y co-

ordinates of the mouse.

glfwSetMouseWheel

The user command with a name in userFunc will be called whenever the

mouse wheel is rolled. The user command should have one input – the mouse

wheel position.

Follows an example how to capture window resizes:

to resize :w :h

 (print [New size] :w "x :h)

end

glfwSetCallback "glfwSetWindowSize "resize

The command resize is called whenever the window is resized.

glfwClearCallback :glfwFunc

Command. This command is a Lhogho extension to GLFW. It unhooks a dedi-

cated GLFW function with name in glfwFunc from whatever user function it is

hooked to by glfwSetCallback. The values of glfwFunc are predetermined

and are the same as in glfwSetCallback.

Follows an example how to stop capturing window resizes:

glfwClearCallback "glfwSetWindowSize

glfwSetWindowSizeCallback :address

Command. Sets (hooks) or clears (unhooks) the callback function for window

size change events. It is preferred to use the more user-friendly command

glfwSetCallback and glfwClearCallback instead of manually setting the

call back function.

glfwSetWindowCloseCallback :address

Command. Sets (hooks) or clears (unhooks) the callback function for window

close events. It is preferred to use the more user-friendly command glfwSet-

Lhogho: The Real Logo Compiler User Documentation

 100

Callback and glfwClearCallback instead of manually setting the call back

function.

glfwSetWindowRefreshCallback :address

Command. Sets (hooks) or clears (unhooks) the callback function for window

refresh events. It is preferred to use the more user-friendly command glfwSet-

Callback and glfwClearCallback instead of manually setting the call back

function.

6. Euler

The Euler library provides numerical functions for integers of arbitrary length

as well as other functions like sorting and permutation.

sort :value

Function. Outputs the input rearranged into alphabetical or numerical order. If

the input is a number or word, the characters are ordered from 0 to z. If the input

is a list of words they are ordered alphabetically, if a list of numbers, they are

ordered by size. If the input is a list of numbers and words, the numbers are or-

dered first by size followed by the words ordered alphabetically. If the input is a

list of lists, the sublists are ordered internally, but the list order is unchanged. If

the input is a list of lists and numbers or words or both, the lists, ordered inter-

nally, are moved to the left followed by the remainder ordered as in previous

cases.

print sort 132546

123456

print sort "b2a5c4

245abc

show sort [2 13 a c 3 b 1]

[1 2 3 13 a b c]

show sort [2 3 a [2 3 2 1] c 3 b 1]

[[1 2 2 3] 1 2 3 3 a b c]

The maximum length of the input is about 10 000 members for a list of numbers

but this drops to about 250 otherwise. The procedure uses a partition sort in the

former case and a selection sort in the latter.

factors :value DE: faktoren

Function. Outputs a list of the factors of its input which must be a positive inte-

ger.

Lhogho: The Real Logo Compiler User Documentation

 -101-

show factors 36

[1 2 3 4 6 9 12 18]

show factors 1

[]

perms :value DE: permut

Function. Outputs a list of the permutations of its input word or number. The

number of permutations is n! where n is the length of the input.

show perms 123

[123 132 231 213 312 321]

Note, that for long inputs the number of permutations may be too big to fit in the

available memory.

allperms :value DE: allepermut

Function. Outputs a list of all the permutations of its input word or number and

its subsets. The last member is the empty word.

show allperms 123

[123 12 132 13 1 231 23 213 21 2 312 31 321 32 3]

show count allperms "a

2

prperms :value DE: dzpermut

Command. Prints each of the permutations of its input word or number. The

number of permutations is !n where n is the length of the input.

prperms "gas

gas

gsa

asg

ags

sga

sag

prperms 1

1

prallperms :value DE: dzallepermut

Command. Prints each of the permutations of its input and the subsets of its in-

put. The last one printed is the empty word.

Lhogho: The Real Logo Compiler User Documentation

 102

prallperms "gas

gas

ga

gsa

gs

g

asg

as

ags

ag

a

sga

sg

sag

sa

s

ppt :value DE: gpt

Function. Outputs a list of primitive Pythagorean triples generated from [3 4 5]

using a UAD Tree
1
. Each triple in a level generates three triples in the next level.

The input, which must be a non-negative integer, specifies the number of levels

to generate. The UAD tree contains only primitive Pythagorean triples (i.e. 3, 4,

5 but not 6, 8, 10) and generates all primitive Pythagorean triples, i.e. any primi-

tive Pythagorean triple will eventually be generated by using enough levels of

the UAD tree.

show ppt 2

[[3 4 5] [5 12 13] [21 20 29] [15 8 17] [7 24 25] [55

48 73] [45 28 53] [39 80 89] [119 120 169] [77 36 85]

[33 56 65] [65 72 97] [35 12 37]]

print count ppt 7

3280

1
Knott R., Pythagorean Triangles and Triples: The UAD Tree of Primitive Pythagorean Trian-

gles; http://www.mcs.surrey.ac.uk/Personal/R.Knott/Pythag/pythag.html#uadgen

Lhogho: The Real Logo Compiler User Documentation

 -103-

A commandlist stored in a variable named "uadrun will be executed once for

each generated triple. Each generated triple is created and stored as part of a

group of three using the variables :utriple, :atriple and :dtriple. An

example of the use of :uadrun, below, calculates the percentage of triples up

to generated level 5 whose element sum is divisible by 10 (an example is 5, 12,

13 with element sum 30)

local "divby10

make "divby10 0

make "uadrun [

 if 0=last(sumlist :utriple)[make "divby10

1+:divby10]

 if 0=last(sumlist :atriple)[make "divby10

1+:divby10]

 if 0=last(sumlist :dtriple)[make "divby10

1+:divby10]

]

local "total

make "total count ppt 5

(pr :divby10 "/ :total "= word :divby10/:total*100 "%)

111 / 364 = 30.4945054945055%

Note that the "seed" for the UAD tree, [3 4 5] must be considered separately.

It is counted in :total but is not examined as part of :uadrun.

prppt :value DE: dzgpt

Command. Prints a listing of primitive Pythagorean triples generated from [3 4

5] using a UAD tree. Each triple in a level generates three triples in the next lev-

el. The input, which must be a non-negative integer, specifies the number of

levels to generate. The UAD tree contains only primitive Pythagorean triples (ie

3,4,5 but not 6,8,10) and any primitive Pythagorean triple will eventually be

generated by using enough levels of the UAD tree.

prppt 0

[3 4 5]

prppt 2

[3 4 5]

[5 12 13] [21 20 29] [15 8 17]

[7 24 25] [55 48 73] [45 28 53] [39 80 89] [119 120

169] [77 36 85] [33 56 65] [65 72 97] [35 12 37]

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Pythag/pythag.html#uadgen

Lhogho: The Real Logo Compiler User Documentation

 104

A commandlist stored in a variable named "uadrun will be executed for each

generated triple (see further discussion under procedure ppt).

fibonacci :digitlimit

Function. Outputs a list of Fibonacci numbers
2
 up to the specified maximum

digit length. Provides for "long integers" to an arbitrary number of digits in the

answer.

show fibonacci 2

[1 1 2 3 5 8 13 21 34 55 89]

show count fibonacci 500

2394

A commandlist stored in a variable named "fibrun will be executed once for

each generated Fibonacci number. The generated number can be accessed

through the variable :current. An example of the use of :fibrun, below, de-

termines how many Fibonacci numbers up to 100 digits in length do not contain

the digit 6.

local "n

make "n 0

make "fibrun [if not member? 6 :current [make "n

1+:n]]

make "tot count fibonacci 100

(pr :n "/ :tot [fibs up to 100 digits long don’t

contain 6])

57 / 480 fibs up to 100 digits long don't contain 6

sumlist :list DE: sumliste

Function. Outputs the sum of the elements of its input list.

print sumlist [1 2 3 4]

10

print sumlist [1.1 2.2 3.3]

6.6

2
 Chandra, Pravin and Weisstein, Eric W. Fibonacci Number. From MathWorld – A Wolfram

Web Resource. http://mathworld.wolfram.com/FibonacciNumber.html

Lhogho: The Real Logo Compiler User Documentation

 -105-

sumlistl :list DE: sumlistel

Function. Outputs the sum of the elements of its input list. It provides for "long

integers" which can be of arbitrary length. Any member of the input list that is

not in the form of an integer will cause the sum to terminate at that point.

print sumlistl [1 99999999999999999999999999999999 1]

100000000000000000000000000000001

print sumlistl [1 2 3.1 4]

3

integerp :value DE: ganzp
integer? :value DE: ganz?

Function. Outputs true if the input is an integer, false otherwise. Maximum

integer value is 9223372036854775296 (approx 9.22e18)

print integerp 123

true

print integer? "123

true

print integerp "123s

false

print integer? 9.22e18

true

print integer? 9.23e18

false

lessthanp :value :value DE: kleineralsp
lessthan? :value :value DE: kleinerals?

Function. If both inputs are numbers, outputs true if the first input is numeri-

cally smaller than the second, false otherwise. If either or both inputs are not

numbers, outputs true if the first comes alphabetically before the second.

print lessthanp 4 123

true

print lessthan? "d "abc

false

Lhogho: The Real Logo Compiler User Documentation

 106

gcd :value :value DE: ggt

Function. Outputs the greatest common divisor
3
 (highest common factor) of its

inputs. Both must be integers and the result is an integer with the same sign as

the smaller valued one.

print gcd 35 14

7

print gcd -3 8

-1

palindromep :value DE: palindromp
palindrome? :value DE: palindrom?

Function. Outputs true if the input word or list is a palindrome, i.e. the same

forwards as it is backwards, false otherwise.

print palindromep "level

true

print palindrome? "a

true

print palindrome? "abc

false

print palindrome? [a bbc a]

true

decrement :value DE: dekrement

Function. Outputs a word that is numerically one less than its input which must

be in the form of an integer. It provides for "long integers" which can contain an

arbitrary number of characters.

print decrement 6

5

print decrement "99999999999999999999999

99999999999999999999998

print decrement "-99999999999999999999999

-100000000000000000000000

3
 Weisstein, Eric W. Greatest Common Divisor. From MathWorld – A Wolfram Web Resource.

http://mathworld.wolfram.com/GreatestCommonDivisor.html

Lhogho: The Real Logo Compiler User Documentation

 -107-

Failure to quote the input can lead to incorrect results if the value lies outside

Lhogho’s integer limit (~ 9.22e18)

print decrement 99999999999999999999999 ; this is

wrong

99999999999999991999999

increment :value DE: inkrement

Function. Outputs a word that is numerically one more than its input which must

be in the form of an integer. It provides for "long integers" which can contain an

arbitrary number of characters.

print increment 5

6

print increment "99999999999999999999999

100000000000000000000000

print increment "-99999999999999999999999

-99999999999999999999998

Failure to quote the input can lead to incorrect results if the value lies outside

Lhogho’s integer limit (~ 9.22e18)

show increment 99999999999999999999999 ; this is wrong

99999999999999992000001

primep :value DE: primp
prime? :value DE: prim?

Function. Outputs true if the positive integer input is prime, false otherwise.

print primep 17

true

print prime? 1

false

A global variable named "primes exists with initial value [2 3 5] that is

used in this procedure and in the procedure prime.factors to store the list of

primes. Additional primes are automatically added to this variable (up to the

square root of the input) as needed using the procedure generate.primes.

show :primes

[2 3 5]

print primep 1001

false

Lhogho: The Real Logo Compiler User Documentation

 108

show :primes

[2 3 5 7 11 13 17 19 23 29 31 37]

prime.factors :value DE: primfaktoren

Function. Outputs a list of the prime factors of its input.

show prime.factors 21

[3 7]

show prime.factors 48

[2 2 2 2 3]

show prime.factors 1

[]

generate.primes :value DE: erzeuge.primz

Function. Outputs a list of all the primes less than its input plus the next one.

show :primes

[2 3 5]

make "primes generate.primes 70

show :primes

[2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67

71]

print count generate.primes 10000

1230

This procedure begins with the existing :primes rather than re-generating from

the start so a pre-calculated list of primes can be used and generate.primes

will simply add to it as required rather than re-calculating from scratch.

add :value :value

Function. Outputs the sum of its inputs. It provides for "long integers" which

can be of arbitrary length. The inputs should always be quoted if entered explic-

itly, otherwise erroneous results can occur. If either input is not in the form of an

integer, the value output is 0.

print add "1 "2

3

print add "99999999999999999999999

"99999999999999999999999

199999999999999999999998

print add "1.1 "2

Lhogho: The Real Logo Compiler User Documentation

 -109-

0

prod :value :value

Function. Outputs the product of its inputs. It provides for "long integers" which

can be of arbitrary length. The inputs should always be quoted if entered explic-

itly, otherwise erroneous results can occur. If either input is not in the form of an

integer, the value output is 0.

print prod "3 "2

6

print prod "99999999999999999999999

"99999999999999999999999

9999999999999999999999800000000000000000000001

print prod "1.1 "2

0

factorial :value DE: faktoriell

:value ! EN, DE

Function. Outputs the factorial
4
 of its input. Provides for "long integers" to an

arbitrary number of digits in the answer.

print factorial 4 ; 4x3x2x1

24

print 28 !

304888344611713860501504000000

ncr :n :r DE: nkr
binomial :value value DE: binominal

Function. Outputs "n choose r" or the binomial coefficient
5
 specified by its in-

puts, i.e.
 !!

!

rnr

n

, as represented in Pascal’s triangle.

print ncr 6 2

15

print binomial 50 25

4
 Weisstein, Eric W. Factorial. From MathWorld – A Wolfram Web Resource.

http://mathworld.wolfram.com/Factorial.html

5
 Weisstein, Eric W. Binomial Coefficient. From MathWorld – A Wolfram Web Resource.

http://mathworld.wolfram.com/BinomialCoefficient.html

Lhogho: The Real Logo Compiler User Documentation

 110

126410606437752

rotatel :value DE: rotierel

Function. Outputs its input rotated to the left by one, ie with the first element

moved to the end.

show rotatel 1234

2341

show rotatel [a b c d]

[b c d a]

rotater :value DE: rotierer

Function. Outputs its input rotated to the right by one, ie with the last element

moved to the beginning.

show rotater 1234

4123

show rotater [a b c d]

[d a b c]

dec2bin :value DE: dekzubin

Function. Outputs the decimal input number converted to binary representation.

print dec2bin 9

1001

print dec2bin 1048576

100000000000000000000

bin2dec :value DE: binzudek

Function. Outputs the binary input number converted to decimal representation.

It is advisable to quote large input numbers (>20 digits).

print bin2dec 1001

9

print bin2dec "100000000000000000000

1048576

dec2hex :value DE: dekzuhex

Function. Outputs the decimal input number converted to hexadecimal represen-

tation.

print dec2hex 27

Lhogho: The Real Logo Compiler User Documentation

 -111-

1B

print dec2hex 1048575

FFFFF

hex2dec :value DE: hexzudek

Function. Outputs the input word in hexadecimal number format converted to

decimal representation.

print hex2dec "1b

27

print hex2dec "FFFFF

1048575

list2word :value DE: listezuwort

Function. Outputs a word formed by concatenating the words in the input list.

print list2word [no w he re]

nowhere

print word list2word [1 2 3] 10

12310

word2list :value DE: wortzuliste

Function. Outputs a list of the characters or digits in the input word or number.

show word2list "now

[n o w]

show word2list 99*99

[9 8 0 1]

Lhogho: The Real Logo Compiler User Documentation

 112

Chapter V. Applications

Applications described in this section are Lhogho programs that can be com-

piled and used as standalone applications. Each application can be run by

Lhogho, but can also be compiled in a standalone executable and be used with-

out Lhogho.

To run an application with Lhogho (and without compiling it into a standalone

executable file), use the command:

lhogho app params

Where app is the name of the source code of the application (together with the

file extension .lgo) and params are the parameters given to the application.

To create a standalone executable application use the command:

lhogho -x app

which will create file app.exe (in Windows) or app (in Linux). To use this file

execute it as any other application:

app params

1. Hello World

This application is the famous Hello World program. It just prints the text Hel-

lo world.

hello

Hello world

2. Simple CLI

CLI stand for command-line interpreter. CLI.lgo implements a simple CLI,

which accepts one-line commands. The command prompt is Lhogho>. To exit

the interpreter type RETURN key without any command. Note that this CLI ac-

cepts only commands on a single line.

cli

Lhogho> make "a 100

Lhogho> print :a

100

Lhogho> to mid :x output :x/2 end

Lhogho> make "b mid mid :a

Lhogho: The Real Logo Compiler User Documentation

 -113-

Lhogho> print :b

25

Lhogho>

3. Prime Numbers

The application Primes is used to print the primes numbers up to a given upper

boundary. It is based on a simple search for primary numbers by building a list

of already found primes.

primes

Lhogho Primes 1.0 - Prints the prime numbers up to a

limit

Usage: primes limit

The application requires a single parameter – the upper limit. It will print all

prime numbers from 2 to the upper limit (inclusive). To get the prime numbers

not greater than 40, execute this command:

primes 10

2 3 5 7

primes 100

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67

71 73 79 83 89 97

primes 500

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67

71 73 79 83 89 97 101 103 107 109 113 127 131 137 139

149 151 157 163 167 173 179 181 191 193 197 199 211

223 227 229 233 239 241 251 257 263 269 271 277 281

283 293 307 311 313 317 331 337 347 349 353 359 367

373 379 383 389 397 401 409 419 421 431 433 439 443

449 457 461 463 467 479 487 491 499

4. Calculator

The application Calc is used to calculate a mathematical expression. The ex-

pression is provided as one or more parameters to the application.

calc

Lhogho: The Real Logo Compiler User Documentation

 114

Lhogho Calculator 1.0 - Calculates a mathematical

expression

Usage: calc "expression"

It is better to frame the expression in double quotes; otherwise the current shell

may try to parse them. Simple expression without parentheses does not require

double quotes:

calc 1+2+3

6

calc "10*(sin 30) - 1/2"

4.5

calc exp 1

2.71828182845905

5. Square Root

The application Sqrt is used to calculate the square root of a number with the

Newton’s method.

lhogho sqrt.lgo

Lhogho SquareRoot 1.0 - Calculates square root with

Newton's method

Usage: sqrt number

The application requires a single parameter – a positive number. It will print all

iterations starting from 1 until the difference between two successive iterations

becomes too small. The last printed iteration is the final calculation:

sqrt 2

 -> 1

 -> 1.5

 -> 1.41666666666667

 -> 1.41421568627451

 -> 1.41421356237469

 -> 1.41421356237309

sqrt 121

 -> 1

Lhogho: The Real Logo Compiler User Documentation

 -115-

 -> 61

 -> 31.49180327868853

 -> 17.66703646495592

 -> 12.25797485371191

 -> 11.06454984414054

 -> 11.00018828973782

 -> 11.00000000161147

 -> 11

6. Cube3D

Cube3D is a graphical application animating a cube rotation using OpenGL

commands. The animation can be accelerated or slowed down by pressing left or

right arrows. ESC key closes the application.

There are two versions of the program – one uses GLUT (cube3d-glut.lgo)

and one uses GLFW (cube3d-glfw.lgo).

lhogho cube3d-glfw.lgo

Cube3D - A rotating OpenGL cube

Press ESC to exit

Use left and right arrows to change speed

Figure 2 Snapshot of the Cube3D application

7. Mandelbrot

Mandelbrot is a graphical application drawing the Mandelbrot set fractal. Pa-

rameters of the program control which area of the set is explored, as well as at

what magnification and color scheme. One the application is started users may

zoom in (with a click of the left mouse button), zoom out (click with the right

mouse button) or exit the application (by pressing the ESC key).

Lhogho: The Real Logo Compiler User Documentation

 116

The parameters of Mandelbrot are not compulsory. They are:

 width – width of the graphical window in pixels (default value 600)

 height – height of the graphical window in pixels (default value 400)

 center x – abscissa of the central point (default value 0)

 center y – ordinate of the central point (default value 0)

 scale – zoom factor (default value 100)

 loops – number of repetitions of color band (default value 1)

 bandname – the name of a color band as defined in mandelbrot.colors.lgo (de-

fault value is rainbow)

The size of graphical window is set by the command line parameters, but the

operating system determines the actual size of the window following the GUI

policies. Thus, width and height define only the desired windows size.

The command line parameters for center x and y shifts the viewing area in a

way that this center matches the center of the graphical window.

The initial zoom factor is defined by scale. Scale equal to 1 sets one mathe-

matical unit length to be one pixel. Because the Mandelbrot set fits in a circle

with radius 2, scale 1 will make the fractal just few pixels big. A starting scale

of 100 or 150 is suggested for viewing the whole Mandelbrot set.

The precision of floating point operations in Lhogho permits scaling up to 10
15

.

Larger scales produce images with artifacts. While zooming in or out the current

scale is displayed in the caption of the graphical window.

Clicking with the left mouse button restarts fractal drawing at a ten times higher

scale and a new center point (defined by the click location). Zooming out with

the right mouse button switched to a 10 times smaller scale.

While the mouse I moved over the graphical window, a small rectangle shows

the area which will be visible if zoomed in. To hide this rectangle move the

mouse pointer near the top of bottom area of the graphical window.

Drawing Mandelbrot set computes a number for each pixel. This number deter-

mines the color of the pixel. Colors for all possible values are defined as bands

in an external file mandelbrot.colors.lgo. Each band is defined as a list

which first element is the background color (it is used for every pixel with unde-

termined color). The next parameters are pairs of color index and colors. Color

indices must be in ascending order. Colors which fall in-between two indices are

interpolated. For example, the default rainbow band is defined as:

(make "band.rainbow [

 [0 0 0] ; background

Lhogho: The Real Logo Compiler User Documentation

 -117-

 000 [0 0 0] ; black

 100 [1 0 0] ; red

 200 [1 1 0] ; yellow

 300 [0 1 0] ; green

 400 [0 1 1] ; cyan

 500 [0 0 1] ; blue

 600 [0 0 0] ; black

])

which corresponds to this color band:

Figure 3 Default rainbow color band

There are three predefined bands – rainbow (default), bw and gold.

The loop parameter defines how many tiled bands will be used. If it is one, then

only 1 band is considered. In the case of rainbow band, all pixels for which cal-

culated value is above 600 are treated as pixels with background color. If loops

is 5, then the rainbow band is tiled five times and pixels with value up to 3000

(i.e. loops×bandsize) will pick color from the band. Note that rainbow band tiled

5 times will have 5 areas with reds, yellows, greens, etc. Longer bands and

higher loop counts make calculations much slower especially if there are many

areas with background colors.

mandelbrot 600 600 -1 0 200 1 bw

Figure 4 The whole Mandelbrot set based on the bw color band

The next example shows full-length command line parameters (both lines are

actually a single long line):

0 100 200 300 400 500 600

Lhogho: The Real Logo Compiler User Documentation

 118

mandelbrot 600 600 -0.74662112123098 -0.11151627135542

3e14 10 gold

Figure 5 The gold color band and extreme zoom of 3
14

mandelbrot 600 600 -0.1185105 -0.8830802 1e7 2 rainbow

Figure 6 The rainbow band

Lhogho: The Real Logo Compiler User Documentation

 -119-

Chapter VI. Appendices

1. Format strings

This appendix lists format strings used by format (for numbers) and for-

mattime (for times and dates). For more details about the strings and discus-

sion about subtle nuances check an online documentation about GCC functions

printf() and strftime().

(a) Format strings for numbers

Format Explanation

Integer

%d An integer as a signed decimal number.

%i An integer as a signed decimal number.

%u An integer as an unsigned decimal number.

%x
An integer as an unsigned hexadecimal number with lower-case

letters.

%X
An integer as an unsigned hexadecimal number with upper-case

letters.

%o An integer as an unsigned octal number.

Floating

point

%f A floating-point number in normal (fixed-point) notation.

%e
A floating-point number in exponential notation with lower-case

letters.

%E
A floating-point number in exponential notation with upper-case

letters.

%g
A floating-point number in either normal or exponential notation,

whichever is more appropriate for its magnitude with lower-case

letters.

%G
A floating-point number in either normal or exponential notation,

whichever is more appropriate for its magnitude with upper-case

letters.

%a
A floating-point number in a hexadecimal fractional notation which

the exponent to base 2 represented in decimal digits with lower-case

letters.

%A
A floating-point number in a hexadecimal fractional notation which

the exponent to base 2 represented in decimal digits with upper-case

letters.

Char
%c A single character.

%C A single UTF-16 character.

String
%s А string.

%S A UTF-16 string.

Pointer %p A pointer (i.e. an address in the memory).

Lhogho: The Real Logo Compiler User Documentation

 120

(b) Format strings for date

Format Explanation

Date

%D The date using the format %m/%d/%y.

%F The date using the format %Y-%m-%d.

%x The preferred date representation for the current locale.

Century %C The century of the year.

Year

%g The year corresponding to the week number (00…99).

%G The year corresponding to the week number.

%y The year without a century as a decimal number (00…99).

%Y The year as a decimal number.

Month

%b The abbreviated month name according to the current locale.

%B The full month name according to the current locale.

%h The abbreviated month name according to the current locale.

%m The month as a decimal number (01…12).

Week

%a The abbreviated weekday name according to the current locale.

%A The full weekday name according to the current locale.

%U
The week number of the current year (00… 53), starting with the first

Sunday as the first day of the first week. Days preceding the first Sun-

day in the year are considered to be in week 00.

%V
The week number (01…53). Starts with Monday and end with Sunday.

Week 01 of a year is the first week which has the majority of its days

in that year.

%W
The week number (00…53), starting with the first Monday as the first

day of the first week. All days preceding the first Monday in the year

are considered to be in week 00.

Day

%d The day of the month (01…31).

%e The day of the month padded with blank (1… 31).

%j The day of the year (001…366).

%u The day of the week (1…7), Monday being 1.

%w The day of the week (0…6), Sunday being 0.

(c) Format strings for time

Format Explanation

Zone

%Z
The time zone abbreviation (empty if the time zone can't be deter-

mined).

%z
RFC 822/ISO 8601:1988 style numeric time zone (e.g., -0600 or

+0100), or nothing if no time zone is determinable.

Time

%r
The complete calendar time using the AM/PM format of the current

locale.

%T
The time of day using decimal numbers using the

format %H:%M:%S.

%R The hour and minute in decimal numbers using the format %H:%M.

%c The preferred calendar time representation for the current locale.

%X The preferred time of day representation for the current locale.

AM/PM %p
Either ‘AM’ or ‘PM’ if the current locale supports ‘AM’/‘PM’ format,

empty string otherwise.

Lhogho: The Real Logo Compiler User Documentation

 -121-

%P
Either ‘am’ or ‘pm’ if the current locale supports ‘AM’/‘PM’ format,

empty string otherwise.

Hour

%H The hour using a 24-hour clock (00…23).

%I The hour using a 12-hour clock (01…12).

%k The hour using a 24-hour clock padded with blank (0…23).

%l The hour using a 12-hour clock padded with blank (1…12).

Minute %M The minute (00…59).

Second
%s The number of seconds since 1970-01-01 00:00:00 UTC.

%S The seconds (00…60).

2. Index of primitives

- 21

!

! 109

*

* 21

.

.bis 44

.solange 43

/

/ 21

?

? 56

_

_int3 78

_stackframe 78

_stackframeatom 79

_stackrahmen 78

_stackrahmenatom ... 79

+

+ 21

<

< 29

<= 30

<> 29

=

= 29

>

> 30

>= 30

A

abs 24

add 108

ade 47

aer 33

aktuellerordner 49

all? 32

alle? 32

alleerstes 33

allepermut 101

allesoffen 53

allopen 53

allperms 101

and 32

andauernd 42

Ä

ändereordner 49

A

any? 33

anzahl 38

arctan 25

asc 38

ascii 38, 39

ashift......................... 27

ausstieg 67

awechsel 27

B

backslash? 32

backslashed? 32

backslashedp 32

backslashp 32

before? 30

beforep 30

bf 34

bfs 34

bibliothekfrei 75

bibliothekladen 75

bin2dec 110

binomial 109

binominal 109

binzudek 110

bitand 28

bitnicht 28

bitnot 28

bitoder 28

bitor 28

bitund 28

bitxor 28

bl 34

blocksize................... 73

blocktolist 74

butfirst 34

butfirsts 34

butlast 34

bye 47

C

caseignorep 65

catch 68

changefolder 49

char 38

closeall 53

Lhogho: The Real Logo Compiler User Documentation

 122

closefile 53

combine 37

commandline 70

cos 25

count 38

currentfolder 49

D

dataaddr 77

dataadr 77

Datei? 50

dateiende? 57

dateiendep 57

dateigröße................. 51

Dateip 50

dateizeiten 51

DE 65

dec2bin 110

dec2hex 110

decrement 106

def 61

def? 61

define 61

defined? 61

definedp 61

definiere 61

defp 61

dekrement............... 106

dekzubin 110

dekzuhex 110

difference 22

differenz 22

do.until 44

do.while.................... 44

dr 56

dribble 58

drucke 56

druckelistenmächtigkeit

 64

druckelistentiefe 64

druckezeile 56

dz 56

dzallepermut 101

dzgpt 103

dzpermut 101

E

eines? 33

el 35

el? 32

element 35

element? 32

elementab 35

elementp 32

elp 32

empty? 31

emptyp 31

end 13

ende 14

entfdup 36

entferne 36

entpacken 74

eof?........................... 57

eofp 57

equal? 29

equalp 29

er 33

erasefile 51

erasefolder 49

erf 51

error 68, 69

erstes 33

erzeuge.primz 108

exp 24

extern 76

external 76

F

factorial 109

factors 100

faktoren 100

faktoriell 109

falsch 11

false 11

fange......................... 68

fehler 68, 69

fibonacci 104

file? 50

filep 50

files........................... 50

filesize 51

filetimes.................... 51

first 33

firstput 37

firsts 33

folder? 50

folderp 50

folders 50

for 43

forever 42

form 39

format 39

formattime 40

fput 37

führeaus.bis 44

führeaus.solange 44

fullprintp................... 64

fulltext 66

funcaddr 77

funktionadr 77

für.bis 43

G

ganz? 105

ganzp 105

gcd 106

gehe 48

generate.primes 108

gensym 38

getenv 70

getenvs 70

ggt 106

gibumgebungsvariable

 70

gibumgebungsvariablen

 70

gisym 38

glBegin 83

glCallList 83

glClear 84

glClearColor 84

glColor3f 84

glDrawBuffer 84

gleich? 29

gleichp 29

glEnable 85

glEnd 83

glEndList 83

glFlush 85

glfwClearCallback 99

glfwCloseWindow 92

glfwDisable 90

glfwEnable 90

glfwGetDesktopMode

 94

glfwGetKey 95

glfwGetMouseButton97

glfwGetMousePos 97

glfwGetMouseWheel 97

glfwGetNumberOfProc

essor 90

glfwGetTime 95

glfwGetVersion .. 89, 90

glfwGetVideoModes 94

glfwGetWindowParam

 93

glfwGetWindowSize 92

glfwIconifyWindow . 93

Lhogho: The Real Logo Compiler User Documentation

 -123-

glfwInit 89

glfwOpenWindow 91

glfwOpenWindowHint

 92

glfwPollEvents 95

glfwRestoreWindow 93

glfwSetCallback 98

glfwSetMousePos 97

glfwSetMouseWheel 97

glfwSetTime 95

glfwSetWindowCloseC

allback 99

glfwSetWindowPos .. 93

glfwSetWindowRefresh

Callback 100

glfwSetWindowSize. 92

glfwSetWindowSizeCal

lback 99

glfwSetWindowTitle 92

glfwSleep 95

glfwSwapBuffers 94

glfwSwapInterval 94

glfwTerminate 89

glfwWaitEvents 95

glGetError 84

glLoadIdentity 82

glMatrixMode 83

glNewList................. 83

glNormalf 84

glOrtho 82

glPointSize 84

glRectf 84

glRotatef................... 82

glScalef 82

glTranslatef 82

gluLookAt 85

gluPerspective 85

glutCreateSubWindow

 86

glutCreateWindow ... 86

glutDisplayFunc 88

glutFullScreen 86

glutHook 87

glutIdleFunc 88

glutInit 86

glutInitDisplayMode 86

glutKeyboardFunc 88

glutLeaveMainLoop . 87

glutMainLoop 87

glutMotionFunc........ 88

glutMouseFunc 88

glutPostRedisplay 87

glutReshapeFunc 89

glutReshapeWindow 86

glutSetCursor 86

glutSetWindow......... 86

glutSpecialFunc 88

glutSwapBuffers 87

glVertex3f 83

glViewport 85

goto 48

gpt 102

greater? 30

greaterequal? 30

greaterequalp 30

greaterp 30

groß 39

größer? 30

größergleich? 30

größergleichp 30

größerp 30

großschrift 39

grundwort? 62

grundwortp 62

H

hex2dec 111

hexzudek 111

I

if 40

ifelse 41

iffalse 41

iftrue 41

ignore 48

ignoriere 48

increment................ 107

inkrement 107

int 23

integer? 105

integerp 105

intern 76

internal 76

iseq 27

item 35

K

klein 39

kleiner? 29

kleinerals? 105

kleineralsp 105

kleinergleich? 30

kleinergleichp 30

kleinerp 29

kleinschrift 39

kombinieren 37

kommandozeile 70

L

lade 45

länge 38

last 34

lastput 37

learn.......................... 14

leer? 31

leerp.......................... 31

lerne.......................... 14

leseort 55

leser 55

less? 29

lessequal? 30

lessequalp 30

lessp.......................... 29

lessthan? 105

lessthanp 105

letztes 34

libfree 75

libload 75

liesliste 57

liespackung 58

liestasten 57

lieswort 57

lieszeichen 56

lieszeichenkette 57

list 36

list? 31

list2word................. 111

liste 36

liste? 31

listep 31

listezuwort 111

listintoblock 74

listp 31

listtoblock 73

ll 57

ln 24

load 45

local 60

log10 24

logodialect 63

logodialekt 63

logoplatform 63

logoplattform 63

logoversion 63

lokal.......................... 60

löschedatei 51

löscheordner 49

lowercase 39

Lhogho: The Real Logo Compiler User Documentation

 124

lput 37

lseq 27

lshift 27

lw 57

lwechsel 27

lz 34

lzeichen 56

lzk 57

M

magseinrückgabe 46

make 59

makefolder 49

maybeoutput 46

me 37

member 35

member?................... 32

memberp 32

minus 22

miterstem 37

mitletztem 37

ml 37

N

name 60

name? 63

namep 63

ncr 109

nicht 33

nkr 109

nodribble 58

not 33

notequal? 29

notequalp 29

number? 31

numberp 31

O

oder 33

öffnedatei 52

öffnenaktualisieren ... 53

öffnenanhängen 52

öffnenlesen 52

öffnenschreiben 52

ohneerstes................. 34

ohneerstesalle 34

ohneletztes 34

ol 34

op 46

openappend 52

openfile 52

openread 52

openupdate 53

openwrite.................. 52

or 33

ordner 50

ordner? 50

ordnerp 50

output 46

P

packen 73

packenzu 74

packgröße 73

palindrom? 106

palindrome? 106

palindromep 106

palindromp 106

parsatz 67

parse 67

perms 101

permut 101

pi 25

pick........................... 35

picke 35

potenz 24

power 24

ppt 102

pr 14, 56

prallperms 101

prim? 107

prime.factors 108

prime? 107

primep 107

primfaktoren 108

primitive? 62

primitivep 62

primp 107

print 56

printdepthlimit 64

printwidthlimit 64

procedure? 62

procedurep 62

prod 109

product 22

produkt 22

prozedur?.................. 62

prozedurp 62

prperms 101

prppt 103

Q

quoted 38

quotient 22

qw 23

R

radarctan 26

radcos 25

radsin 25

random 26

rawascii 39

rc 56

rcs 57

readblock 58

readchar 56

readchars 57

reader 55

readlist 57

readpos 55

readrawline 57

readword................... 57

remainder 23

remdup 36

remove 36

renamefolder 49, 51

repcount 42

repeat 42

rerandom 26

rest 23

reverse 37

rg 46

rk 47

rl 57

rotatel 110

rotater 110

rotierel 110

rotierer 110

round 23

rseq 27

rückgabe 46

rückkehr 47

run 44

runde 23

runmacro 45

runparse 67

runresult 45

rw 57

S

sample 13

satz 36

satzbilden 36

schildchen................. 47

schließealles 53

Lhogho: The Real Logo Compiler User Documentation

 -125-

schließedatei 53

schreibeort 55

schreibepackung 59

schreiber 55

se 36

sentence 36

setread 54

setreadpos................. 55

setwrite 54

setwritepos 55

setze 59

setzelesen 54

setzeleseort 55

setzeordner 49

setzeschreiben 54

setzeschreibeort 55

show 56

sin 25

sort 100

sqrt 23

startezufall 26

stop 47

substring 35

substring? 32

substringp 32

sum 22

sumlist 104

sumliste 104

sumlistel 105

sumlistl 105

summe 22

system 67

sz 26

T

tag 47

test 41

text 65

tgaclose 81

tgaöffnen 81

tgaopen 81

tgaschließen 81

tgaschreiben 81

tgawrite 81

thing 60

throw 67

timezone 40

toplevel 67

true 11

tue 44

tuemakro 45

tueparsatz 67

tuewert 45

type........................... 56

U

umbenennendatei 51

umbenennenordner ... 49

umkehrung 37

und 32

ungleich? 29

ungleichp 29

until 44

uppercase.................. 39

V

vgdatei 51

vollelistentiefep 64

volltext 66

vorher? 30

vorherp 30

W

wahr 11

wait........................... 48

warte......................... 48

wenn 40

wennfalsch 41

wennsonst 41

wennwahr 41

wert 60

wf 41

wh 42

while 43

whzahl 42

wiederhole 42

wirf 67

word 36

word? 31

word2list................. 111

wordp 31

wort 36

wort? 31

wortp 31

wortzuliste 111

writeblock................. 59

writepos 55

writer 55

ww 41

Z

zahl? 31

zahlp 31

zeichen 38

zeitformat 40

zeitzone 40

zg 56

zitiert 38

zufallszahl 26

zz 26

О

ое 34

оеа 34

